Journal of Industrial and Engineering Chemistry, Vol.17, No.4, 700-704, July, 2011
Amelioration of the reaction kinetics of Mg with hydrogen by reactive mechanical grinding with Ni, Fe2O3, Ti or Fe
E-mail:
The magnesium prepared by mechanical grinding under H2 (reactive mechanical grinding) with
transition elements or oxides showed relatively high hydriding and dehydriding rates when the content of additives was about 20 wt%. Ni and Fe were chosen as transition elements to be added. Ti was also selected since it was considered to increase the hydriding and dehydriding rates by forming Ti hydride. Samples Mg-14Ni-6Fe2O3, Mg-14Ni-6Ti, Mg-14Ni-3Fe2O3-3Ti, and Mg-14Ni-2Fe2O3-2Ti-2Fe were prepared by reactive mechanical grinding, and their hydrogen storage properties were examined. Among these samples, Mg-14Ni-6Ti had the highest hydriding and dehydriding rates.
Keywords:H2-storage properties of Mg;Addition of Ni;Fe2O3;Ti;or Fe;Reactive mechanical grinding;Mg2Ni formation;Mg(OH)2 formation
- Lee SH, Chung H, J. Ind. Eng. Chem., 6(6), 380 (2000)
- Paek S, Ahn DH, Kim KR, Lee M, Chung H, J. Ind. Eng. Chem., 10(3), 468 (2004)
- Paek SW, Ahn DH, Kim KR, Yim SP, Chung HS, J. Ind. Eng. Chem., 10(4), 539 (2004)
- Paek S, Ahn DH, Kim KR, Chung H, J. Ind. Eng. Chem., 8(1), 12 (2002)
- Vose A, Metal Hydrides, U.S. Patent 2944, 587 (1961)
- Reilly JJ, Wiswall RH, Inorg. Chem., 6, 2220 (1967)
- Reilly JJ, Wiswall Jr. RH, Inorg. Chem., 7(11), 2254 (1968)
- Douglass DL, Metall. Trans., A6, 2179 (1975)
- Mintz MH, Gavra Z, Hadari Z, J. Inorg. Nucl. Chem., 40, 765 (1978)
- Pezat M, Hbika A, Darriet B, Hagenmuller P, French Anvar Patent 78 203 82 (1978)
- Pezat M, Hbika A, Darriet B, Hagenmuller P, Mater. Res. Bull., 14, 377 (1979)
- Pezat M, Darriet B, Hagenmuller P, J. Less-Common Met., 74, 427 (1980)
- Wang Q, Wu J, Au M, Zhang L, in: Vezirog˘lu TN, Taylor JB (Eds.), Proceedings of the Fifth World Hydrogen Energy Conference (Hydrogen, Energy Progress V), vol. 3, Toronto, Canada, Pergamon, New York, 1279 (1984)
- Akiba E, Nomura K, Ono S, Suda S, Int. J. Hydrogen Energy., 7(10), 787 (1982)
- Boulet JM, Gerard N, J. Less-Common Met., 89, 151 (1983)
- Tanguy B, Soubeyroux JL, Pezat M, Portier J, Hagenmuller P, Mater. Res. Bull., 11, 1441 (1976)
- Eisenberg FG, Zagnoli DA, Sheridan III JJ, J. Less-Common Met., 74, 323 (1980)
- Song MY, J. Mater. Sci., 30(5), 1343 (1995)
- Song MY, Ivanov EI, Darriet B, Pezat M, Hagenmuller P, Int. J. Hydrogen Energy., 10, 169 (1985)
- Song MY, Ivanov EI, Darriet B, Pezat M, Hagenmuller P, J. Less-Common Met., 131, 71 (1987)
- Song MY, Int. J. Hydrogen Energy., 20(3), 221 (1995)
- Bobet JL, Akiba E, Nakamura Y, Darriet B, Int. J. Hydrogen Energy., 25, 987 (2000)
- Song MY, Kwon IH, Kwon SN, Park CG, Hong SH, Mumm DR, Bae JS, J. Alloys Compd., 415, 266 (2006)
- Song MY, Baek SH, Bobet JL, Hong SH, Int. J. Hydrogen Energy., 3(5), 10366 (2010)
- Song MY, Baek SH, Bobet JL, Kwon SN, Hong SH, J. Mater. Sci., 44(18), 4827 (2009)