화학공학소재연구정보센터
Polymer(Korea), Vol.35, No.6, 499-504, November, 2011
조직공학적 연골재생을 위한 In Vitro 환경에서의 탈미네랄화 골분용액을 함유한 PLGA 지지체의 효과
Effect of PLGA Scaffold Containing Demineralized Bone Solution for Articular Cartilage Tissue Engineering: In Vitro Test
E-mail:,
초록
본 연구팀은 탈미네랄화 골분(DBP)이라는 천연재료를 졸(sol)화시켜 poly(lactide-co-glycolide) (PLGA)에 함침시킨 지지체를 개발하였다. DBP를 함침시킨 PLGA 지지체 상의 세포증식과 모폴로지를 평가하기 위해 MTT 분석과 SEM을 측정하였다. 또한 sGAG와 콜라겐 함량 측정과 파종된 연골 세포의 표현형 유지에 미치는 영향을 확인하였다. 그 결과 PLGA에 DBP를 함침시킨 지지체가 PLGA 지지체보다 높은 세포 증식률을 보였다. 또한 파종된 연골세포의 표현형 유지에도 긍정적인 영향을 미치는 것을 확인하였다. 이번 연구 결과를 토대로 PLGA에 DBP를 이용한 용액을 함침시킴으로써 DBP내의 성장인자와의 상호작용을 통해 연골세포의 성장에 긍정적 영향을 미쳐 안정되게 연골을 조직화할 수 있는 연골조직공학 지지체로 적합할 것으로 예상된다.
Articular cartilage has an intrinsic difficulty in recovering damages, which requires its tissue engineering treatment. Demineralized bone particle (DBP) contains various bioactive molecules. It is widely used biomaterials in the field of tissue engineering. We developed the synthetic/natural hybrid scaffolds with poly(lactide-co-glycolide) (PLGA) and solution of DBP. The chondrocytes were seeded on the PLGA-DBP scaffolds and MTT assay, morphological observation, biological assay for collagen, sGAG, and RT-PCR were performed to analyze the effect of the DBP on cell viability and extracellular matrix secretion. In SEM observation, we observed that PLGA-DBP scaffolds had uniform porosity. As MTT assay showed scaffolds containing DB solution had higher cell viability then only PLGA scaffolds. The PLGA-DBP scaffolds had better ECM production than PLGA scaffold. It was proven by the higher specific mRNA expression in the PLGA-DBP scaffold than that in PLGA scaffold. These results indicated that PLGA-DBP scaffolds might serve as potential cell delivery vehicles and structural bases for in vitro tissue engineered articular cartilage.
  1. Mankin HJ, J. Bone. Joint. Surg. Am., 64, 460 (1982)
  2. Goldberg VM, Caplan AI, “Cellular Repair of Atricular Cartilage”, in Osteoarthritic Disorders, Kuettner KE, Goldberg VM, Editors, Chap 25, VM Coldberg, AAOS (1994)
  3. Seal BL, Oterom TC, Panitch A, Mater. Sci. Eng., 34, 147 (2001)
  4. Vinson AL, Hemperly JJ, Guarino RD, Spargo CA, Heidaran MA, “Bioactive Extracellular Matrices: Biological and Biochemical Evaluation”, in Tissue Engineering and Biodegradable Equivalents, Scentific and Clinical Applications, Lewandrowski KU, Wise DL, Trantolo DJ, Gresser JD, Yaszemski MJ, Altobelli DE, Editors, Marcel Dekker, New York, Basel 709-764 (2002)
  5. Cima LG, Vacanti JP, Ingber D, Langer R, J. Biomech.Eng., 113, 143 (1991)
  6. Holland SJ, Tighe BJ, Could PL, J. Control. Release., 4, 155 (1986)
  7. Khang G, Lee HB, Methods of Tissue Engineering., Atala A, Lanza R, Editors, Academic Press, SanDiego, California, 67, 771 (2001)
  8. Squatrito RC, Connor JP, Buller RE, Gynecol. Oncol., 58, 101 (1995)
  9. Coegan P, Jonson G, Vincent R, Toxic in Vitro., 9, 257 (1995)
  10. Kim SH, Park KS, Choi BS, Rhee JM, Kim MS, Lee HB, Khang G, Adv. Exp. Med. Biol., 585, 167 (2006)
  11. Ko YK, Kim SH, Jeong JS, Ha HJ, Yoon SJ, Rhee JM, Kim MS, Lee HB, Khang G, Polymer(Korea)., 31, 14 (2006)
  12. Choi BS, Kim SH, Yoon SJ, Ha HJ, Kim MS, Yang YI, Son YS, Rhee JM, Lee HB, Khang G, Tissue Eng. Regen. Med., 3, 295 (2006)
  13. Park KS, Jin CM, Yun SJ, Hong KD, Kim SH, Kim MS, Rhee JM, Khang G, Lee HB, Polym.(Korea), 29(5), 501 (2005)
  14. Urist MR, Science., 150, 893 (1965)
  15. Payne RG, Yaszemski MJ, Yasko AW, Mikos AG, Biomaterials., 23, 4359 (2001)
  16. Matsuoka M, Wispriyono B, Igisu H, Biochem. Pharmacol., 59, 1573 (2000)
  17. Shin HS, Temenoff JS, Bowden GC, Zygourakis K, Carson MC, Yaszemski MJ, Mikos AG, Biomaterials., 26, 3645 (2005)
  18. Khang G, Lee SJ, Han CW, Rhee JM, Lee HB, Adv. Exp. Med. Biol., 657, 235 (2003)