화학공학소재연구정보센터
Polymer(Korea), Vol.35, No.6, 526-530, November, 2011
Biomass 유래 퓨란계 단량체를 이용한 폴리에스터의 중합 및 특성 연구
Polymerization and Characterization of Polyesters Using Furan Monomers from Biomass
E-mail:
초록
바이오매스에서 유래된 2,5-dihydroxymethylfuran(DHMF)을 KMnO4 산화반응으로 furan-2,5- dicarboxylic acid(FDCA)를 합성하였다. 합성한 FDCA와 다이올류를 에스테르화 반응과 축중합 반응을 진행시켜 폴리에스터를 중합하였다. 폴리에스터는 NMR을 통해 조성을 분석하였고 DSC와 TGA를 통해 열적특성을 분석하였다. 합성된 폴리에스터의 고유점도는 0.78∼1.2 dL/g으로 상용화된 poly(ethylene terephthalate)(PET)와 비슷하였다. 다이올의 길이가 증가할수록 Young’s modulus와 strength는 낮아지고 elongation-to-break는 높아지는 경향을 확인하였다. 합성한 poly(ethylene furandicarboxylate)(PEF)의 Young’s modulus는 3551 MPa, strength는 103 MPa로 상용화된 PET와 비슷하였다.
Furan-2,5-dicarboxylic acid (FDCA) was synthesized by KMnO4 oxidation of 2,5-dihydroxymethylfuran(DHMF) derived from biomass. Polyesters were synthesized by esterification and polycondensation of FDCA with various diols(ethane-1,2-diol, propane-1,3-diol, butane-1,4-diol, hexane-1,6-diol, decane-1,10-diol). The composition of polyesters was characterized by using 1H NMR. Thermal properties of the polyesters were characterized by DSC and TGA. Intrinsic viscosities(IV) of the polyesters were measured to be 0.78∼1.2dL/g comparable with IV of commercial poly(ethylene terephthalate)(PET). As the chain lengths of diols increased, Young’s modulus and strength decreased and elongation-to-break generally increased. Young’s modulus and strength of the polyesters were measured to be 3551 MPa and 103 MPa, respectively, comparable with commercial PET.
  1. Wolf O, Crank M, Patel M, Weidemann FM, Schleich J, Husing B, and G. Angerer G, European Commission Joint Research Center., EUR 22103 EN, 37-157 (2005)
  2. Park SH, NICE., 26, 48 (2008)
  3. Chang JS, NICE., 27, 295 (2009)
  4. Panari RG, Chougale RB, Nandibewoor ST, J. Phys.Org. Chem., 11, 448 (1998)
  5. Miura T, Kakinuma H, Kawano T, Matsuhisa H, U.S. Patent 7,411,078 (2008)
  6. Sheehan MT, Sounik HT, U.S. Patent 7,148,320 (2006)
  7. Mitsuda K, Matsuhisa H, Hotie H, Komuro T, U.S. Patent 0124763 (2009)
  8. Moore JA, Kelly JE, Macromolecules., 11, 568 (1977)
  9. Martin EV, Kibler CJ, Man-Made Fibers., 3, 83 (1968)