화학공학소재연구정보센터
Polymer(Korea), Vol.35, No.6, 593-598, November, 2011
전바나듐계 레독스-흐름 전지용 IPA-co-HDO-co-(TPA/MA) 음이온교환막의 합성 및 특성
Synthesis and Characterization of IPA-co-HDO-co-(TPA/MA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery
E-mail:
초록
본 연구에서는 전바나듐 레독스-흐름 전지용 음이온교환막의 제조를 위하여 isophthalic acid (IPA), 1,6-hexanediol(HDO), terephthalic acid(TPA), maleic anhydride(MA)의 용융 축합중합 방법에 의해 IPA-co-HDO-co-(TPA/MA)(IHTM) 공중합체를 합성하였다. 합성된 IHTM 공중합체 아민화 반응을 trimethylamine으로 하였으며, UV 가교 반응을 통하여 음이온교환막을 제조하였다. IHTM 공중합체의 구조 및 열안정성을 FTIR, 1H NMR, TGA 분석을 통하여 확인하였다. 또한 IHTM 음이온교환막의 함수율, 이온교환용량, 전기저항, 전기전도도를 중량법, 적정법 및 LCR 미터로 측정하였으며, 전바나듐 레독스-흐름 전지의 효율 실험을 하였다. 막의 이온교환용량, 전기저항, 전기전도도는 각각 1.10 meq/g, 1.98 Ωㆍcm2, 0.009 S/cm로 우수하게 나타났으며, 전바나듐 레독스-흐름 전지의 충ㆍ방전효율, 전압효율 및 에너지효율은 각각 96.5, 74.6, 70.0%이었다.
The IPA-co-HDO-co-(TPA/MA) copolymers for all-vanadium redox flow battery were synthesized by melt condensation polymerization using isophthalic acid(IPA), 1,6-hexandiol (HDO), terephthalic acid(TPA) and maleic anhydride(MA). The amination of chloromethylated IPA-co- HDOco-(TPA/MA)(CIHTM) copolymer was carried out using trimethylamine, and the anion exchange membrane was also prepared by UV crosslinking reaction. The structure and thermal stability of IHTM copolymers were confirmed by FTIR, 1H NMR, and TGA analysis. The anion membrane properties such as water uptake, ion exchange capacity, electric resistance and electrical conductivity, were measured by gravimetry, titration and LCR meter. The efficiency of the all-vanadium redox flow battery was analyzed. The ion exchange capacity, electric resistance and electrical conductivity were 1.10 meq/g, 1.98 Ωㆍcm2, and 0.009 S/cm, respectively. The efficiency of charge-discharge, voltage, and energy for the allvanadium redox flow battery were 96.5, 74.6, 70.0%, respectively.
  1. Barragan VM, Villaluenga JPG, Godino MP, Izquierdo-Gil MA, Ruiz-Bauza C, Seoane B, J. Colloid Interface Sci., 333(2), 497 (2009)
  2. Lee DH, Kang YS, Kim JH, Macromol. Res., 17(2), 104 (2009)
  3. Ohya H, Ohto T, Sawamura T, Honda H, Matsumoto K, Negish Y, Denki Kagaku., 56, 34 (1988)
  4. de Korosy F, Shorr J, DeChema Mogr., 47, 477 (1992)
  5. Kang AS, J. Korean Ind. Eng. Chem., 4(2), 393 (1993)
  6. Lee YW, Kim YY, Kang HC, Shin SJ, Lee BC, Kang AS, Memb. J., 5, 109 (1995)
  7. Mai Z, Zhang H, Li X, Xiao S, Zhang H, J. Power Sources., 10, 1016 (2010)
  8. Qiu JY, Li MY, Ni JF, Zhai ML, Peng J, Xu L, Zhou HH, Li JQ, Wei GS, J. Membr. Sci., 297(1-2), 174 (2007)
  9. Luo QT, Zhang HM, Chen J, Qian P, Zhai YF, J. Membr. Sci., 311(1-2), 98 (2008)
  10. Grossmith F, Llewellyn P, Fane AG, Kazacos MS, Proc. Electrochem. Soc. Symp.
  11. Mohammadi T, Kazacos MS, J. Appl. Electrochem., 27(2), 153 (1997)
  12. Cho IH, Baek K, Lee CS, Nho YC, Yoon SK, Hwang TS, Polym.(Korea), 31(1), 1 (2007)
  13. Choi KJ, Choi JH, Hwang EH, Rhee YW, Hwang TS, Polym.(Korea), 31(3), 247 (2007)
  14. Kim DJ, Chang BJ, Kim JH, Lee SB, Joo HJ, Memb. J., 16, 221 (2006)
  15. Jeong BY, Song SH, Baek KW, Cho IH, Hwang TS, Polym.(Korea), 30(6), 486 (2006)
  16. Luo XL, Lu ZZ, Xi JY, Wu ZH, Zhu WT, Chen LQ, Qiu XP, J. Phys. Chem. B, 109(43), 20310 (2005)
  17. Kazacos MS, Kazacos G, Poon G, Verseema H, Int. Energ. Convers. Manage., 51, 2816 (2010)
  18. Mallakpour S, Rafiee Z, React. Funct. Polym., 69, 252 (2009)
  19. Mallakpour S, Rafiee Z, React. Funct. Polym., 68, 91 (2008)
  20. Mallakpour S, Rafiee Z, Polymer, 49(13-14), 3007 (2008)
  21. Liu H, Lee MH, Lee J, Macromol. Res., 17(10), 725 (2009)
  22. Park CH, Shin DW, Lee YM, Kang PH, Nho YC, Macromol. Res., 17(11), 825 (2009)
  23. Kim DH, Kim SC, Macromol. Res., 16(5), 457 (2008)