Biotechnology and Bioengineering, Vol.108, No.1, 69-81, 2011
Application of an Aqueous Two-Phase Systems High-Throughput Screening Method to Evaluate mAb HCP Separation
Aqueous two-phase systems (ATPSs) as separation technique have regained substantial interest from the biotech industry. Biopharmaceutical companies faced with increasing product titers and stiffening economic competition reconsider ATPS as an alternative to chromatography. As the implementation of an ATPS is material, time, and labor intensive, a miniaturized and automated screening process would be beneficial. In this article such a method, its statistical evaluation, and its application to a biopharmaceutical separation task are shown. To speed up early stage ATPS profiling an automated application of the cloud-point method for binodal determination was developed. PEG4000-PO4 binodals were measured automatically and manually and were found to be identical within the experimental error. The ATPS screening procedure was applied to a model system and an industrial separation task. PEG4000-PO4 systems at a protein concentration of 0.75 mg/mL were used. The influence of pH, NaCl addition, and tie line length was investigated. Lysozyme as model protein, two monoclonal antibodies, and a host cell protein pool were used. The method was found to yield partition coefficients identical to manually determined values for lysozyme. The monoclonal antibodies were shifted from the bottom into the upper phase by addition of NaCl. This shift occurred at lower NaCl concentration when the pH of the system was closer to the pI of the distributed protein. Addition of NaCl, increase in PEG4000 concentration and pH led to significant loss of the mAb due to precipitation. Capacity limitations of these systems were thus demonstrated. The chosen model systems allowed a reduction of up to 50% HCP with a recovery of greater than 95% of the target proteins. As these values might not be industrially relevant when compared to current chromatographic procedures, the developed screening procedure allows a fast evaluation of more suitable and optimized ATPS system for a given task. Biotechnol. Bioeng. 2011;108: 69-81. (C) 2010 Wiley Periodicals, Inc.
Keywords:aqueous two-phase system;high-throughput screening;monoclonal antibody;design of experiments;multilinear regression