화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.17, No.1, 1-11, January, 2000
Shape-Selective Alkylation of Biphenyl Catalyzed by H-Mordenites
E-mail:
Liquid phase alkylation of biphenyl was studied over large pore zeolites. Selective formation of the narrowest products, 4,4''-diisopropylbiphenyl (4,4''DIPB), occurred only HM among the zeolites with twelve-membered pore openings. These shape-selective catalyses are ascribed to steric restriction of transition state and to entrance of bulky substrates into the pores. The dealumination of HM enhanced catalytic activity and the selectivity of 4,4''-DIPB because of the decrease of coke-deposition, while the activity and the selectivity were low over HM with the low SiO2/AI2O3 ratio. Non-regioselective catalysis occurs on external acid sites because severe cokedeposition deactivates the acid sites inside the pores by blocking pore opening. The selectivity of DIPB isomers was changes with propylene pressure and/or with reaction temperature. 4,4''-DIPB yielded selectively under high propylene pressure(<0.3MPa) at 250℃, while the selectivity of 4,4''-DIPB decreased under such low propylene pressure as 0.2 MPa. Selective formation of 4,4''DIPB was observed at moderate temperature such as 250℃, whereas the decrease of the selectivity of 4,4''DIPB occurred at higher temperature as 300℃. However, 4,4''-DIPB was almost exclusively isomer in the encapsulated DIPB isomers inside the pores under every pressure and temperature. These decreases of the selectivity of 4,4''-DIPB are due to the isomerization of 4,4''-DIPB on the external acid sites. The deactivation of external acid sites of HM was examined to reduce non-regioselective alkylation and isomerization. External acid sites were deactivated by calcination after impregnation of cerium on HM without the decrease in pore radii. Selectivities of 4,4''-DIPB were improved even at high temperatures in the isopropylation of biphenyl because of the suppression of non-regioselective alkylation and isomerization at the external acid sites. The selectivity of 4.4''-diethylbiphenyl(4,4''-DIPB) in the ethylation of biphenyl was much lower than that in the isopropylation. Among the DIPB isomers, 4,4''-DIPB has the higher reactivity for the ethylation to polyethylbiphenyls inside the pores, whereas the isopropylation of 4,4''-DIPB was negligibly low inside the pores. These differences are ascribed to the difference in steric restriction at the transition state compound of substrate, alkylating agent, and acid sites inside the pores.
  1. Anastas PT, Williamson TC, "Green Chemistry. Frontiers in Benign Chemical Synthesis and Processes," Oxford University Press, Oxford (1998)
  2. Csicsery SM, Zeolites, 4, 202 (1984) 
  3. Venuto PB, Microporous Mater., 2, 297 (1994) 
  4. Sugi Y, Kubota Y, "Shape-selective Catalysis of Zeolite in the Alkylation of Aromatics," in Catalysis, Spivey, J.J. (ed.), Specialist Periodical Report, Royal Soc. Chem., London, Chapter 3, 13, 55 (1997)
  5. Kaeding WW, Chu C, Young LB, Weinstein B, Butter J, J. Catal., 67, 159 (1981) 
  6. Namba S, Kim JH, Yashima T, Stud. Surf. Sci. Catal., 83, 279 (1994) and their earlier papers cited in
  7. Young LB, Butter SA, Kaeding WW, J. Catal., 76, 418 (1982) 
  8. Karge HG, Laderbeck J, Sarbak Z, Hatada K, Zeolites, 2, 94 (1982) 
  9. Polym. Soc. Japan (ed.), in "High Performance Polynuclear Aromatics Materials," Maruzen, Tokyo (1990)
  10. Matsuzaki T, Sugi Y, Hanaoka T, Takeuchi K, Arakawa H, Tokoro T, Takeuchi G, Chem. Express, 4, 413 (1989)
  11. Sugi Y, Matsuzaki T, Hanaoka T, Takeuchi K, Tokoro T, Takeuchi G, Stud. Surf. Sci. Catal., 60, 303 (1991)
  12. Sugi Y, Matsuzaki T, Hanaoka T, Kubota Y, Kim JH, Tu X, Matsumoto M, Stud. Surf. Sci. Catal., 90, 397 (1994)
  13. Hanaoka T, Nakajima K, Sugi Y, Matsuzaki T, Kubota Y, Tawada S, Kunimori K, Igarashi A, Catal. Lett., 50(3-4), 149 (1998)
  14. Tu X, Matsumoto M, Matsuzaki T, Hanaoka T, Kubota Y, Sugi Y, Catal. Lett., 21, 71 (1993) 
  15. Sugi Y, Tu X, Matsuzaki T, Hanaoka T, Kubota Y, Kim JH, Matsumoto M, Nakajima K, Igarashi A, Catal. Today, 31(1-2), 3 (1996) 
  16. Tawada S, Kubota Y, Sugi Y, Hanaoka T, Matsuzaki T, Catal. Lett., 57(4), 217 (1999) 
  17. Sugi Y, Tawada S, Sugimura T, Kubota Y, Hanaoka T, Matsuzaki T, Nakajima K, Kunimori K, Appl. Catal. A: Gen., 189(2), 251 (1999) 
  18. Sugi Y, Matsuzaki T, Hanaoka T, Kubota Y, Kim JH, Tu X, Matsumoto M, Sekiyu Gakkaishi, 37, 557 (1994)
  19. Takeuchi G, Okazaki H, Kito T, Sugi Y, Matsuzaki T, Sekiyu Gakkaishi, 34, 242 (1991)
  20. Sugi Y, Tawada S, Sugimura T, Kubota Y, manuscript in preparation
  21. Nakajima K, Tawada S, Sugi Y, Kubota Y, Hanaoka T, Matsuzaki T, Kunimori K, Chem. Lett., 215 (1999) 
  22. Matsumoto M, Tu X, Sugi Y, Matsuzaki T, Hanaoka T, Kubota Y, Kim JH, Nakajima K, Igarashi A, Kunimori K, Stud. Surf. Sci. Catal., 105, 1317 (1997)
  23. Nakajima K, Hanaoka T, Sugi Y, Matsuzaki T, Kubota Y, Igarashi A, Kunimori K, "Influences of Bulkiness of Reagents in the Alkylation of Biphenyl over H-Mordenite," in "Shape Selective Catalysis-Chemicals Synthesis and Hydrocarbon Processing," ACS Symposium Series 738, Song, C., Garces, J.M. and Sugi, Y. (eds), Am. Chem. Soc., Chapter 19, 260 (1999)
  24. Lee GS, Maj JJ, Rocke SC, Garces JM, Catal. Lett., 2, 243 (1989) 
  25. Taniguchi T, Tanaka M, Takahata K, Sakamoto N, Takai T, Kurano Y, Ishibushi M, "Process for Producing Alkyl-group-substituted Aromatic Hydrocarbons," PCT Int., Appl., WO 88 03523 (assigned to Mitsui Petrochem. Ind. Ltd.)
  26. Sakamoto N, Takai T, Taniguchi K, Takahata K, "Process for the Catalytic Preparation of p,p'-Dialkylbiphenyls," Jpn. Tokkyo Kokai Koho, 88-122635 (assigned to Mitsui Petrochem. Ind. Ltd)
  27. Fellmann J, in Catalytica Highlights, 17(#1), 1 (1991)
  28. Matsuda T, Kikuchi E, Stud. Surf. Sci. Catal., 83, 295 (1994)
  29. Matsuda T, Urata T, Saito U, Kikuchi E, Appl. Catal. A: Gen., 131(2), 215 (1995) 
  30. Matsuda T, Kimura T, Herawati E, Kobayashi C, Kikuchi E, Appl. Catal. A: Gen., 136(1), 19 (1996) 
  31. Kim JH, Matsuzaki T, Hanaoka T, Kubota Y, Sugi Y, Matsumoto M, Tu X, Microporous Mater., 5, 113 (1995) 
  32. Sugi Y, Kim JH, Matsuzaki T, Hanaoka T, Kubota Y, Tu X, Matsumoto M, Stud. Surf. Sci. Catal., 84, 1837 (1994)
  33. Kim JH, Sugi Y, Matsuzaki T, Hanaoka T, Kubota Y, Tu X, Matsumoto M, Kato A, Seo G, Pak C, Appl. Catal. A: Gen., 131(1), 15 (1995) 
  34. Katayama A, Toba M, Takeuchi G, Mizukami F, Niwa S, Mitamura S, J. Chem. Soc.-Chem. Commun., 39 (1991)
  35. Song C, Schmitz AD, Sekiyu Gakkaishi, 42, 275 (1999), and their previous papers cited in
  36. Chu SJ, Chen YW, Appl. Catal. A: Gen., 123(1), 51 (1995) 
  37. Derouane EG, Gabelica Z, J. Catal., 65, 486 (1980) 
  38. Meier WM, Olson DH, Baerlocher CH, "Atlas of Zeolite Structure Types," 4th revised edition, Elsevier, Amsterdam (1996)
  39. Dejaifve P, Auroux A, Gravelle PC, Vedrine JC, Gabelica Z, Derouane EG, J. Catal., 70, 123 (1981) 
  40. Guisnet M, Magnoux P, Appl. Catal., 54, 1 (1989) 
  41. Bhatia S, Beltramini J, Do DD, Catal. Rev.-Sci. Eng., 31, 431 (1989)
  42. Karge HG, Weitkamp J, Chem. Ind. Technol., 58, 946 (1986) 
  43. Meyers L, Fleisch TH, Ray GJ, Miller JT, Hall JB, J. Catal., 110, 82 (1988) 
  44. Sawa M, Niwa M, Murakami Y, Appl. Catal., 53, 169 (1989) 
  45. Itabashi K, Fukushima T, Igawa K, Zeolites, 6, 30 (1986)