화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.17, No.1, 58-66, January, 2000
Corrosion Resistance of Stainless Steels in Chloride Containing Supercritical Water Oxidation System
E-mail:
As the science and process applications of supercritical water (SCW) and supercritical water oxidation (SCWO) become more thoroughly understood, it is logical to envision the use of the SCWO process by diverse industries and public wastewater and sludge generators. This technology can be adapted to accomplish either pre or end-of-pipe wastewater treatment. There is a need to destroy both military and civilian hazardous waste, and urgency, mandated by public concern over traditional waste handling methodologies, to identify safe and efficient alternative technologies. by capitalizing on the properties of water above its critical point, 374℃ and 22.4 MPa for pure water, this technology provides rapid and complete oxidation with high destruction efficiencies at typical operating temperatures. Nevertheless, corrosion of the materials of fabrication is a serious concern. While iron-based alloys and nickel-based alloys are generally considered important for service applications, results from laboratory and pilot-scale SCWO systems presently in operation indicate that they will not withstand some aggressive feeds. Significant weight loss and localized effects, including stress corrosion cracking (SCC) and dealloying, are seen in chlorinated environments. This work assesses the corrosion characteristics of iron-based stainless steels exposed to high supercritical temperatures in a chlorinated military waste containing salts.
  1. Aqua forties, US Army Research Office, 2(2) (1993)
  2. Aqua forties, US Army Research Office, 2(2) (1993)
  3. Aqua forties, US Army Research Office, 3(1) (1994)
  4. ASM Handbook, Corrosion, 9(th) ed., Materials Park, OH, ASM International, 13, 641 (1987)
  5. Bramlette TT, Mills BE, Hencken KR, Brynildson ME, Johnston SC, Hruby JN, Feemster HC, Odegard BC, Modell M, "Destruction of DOE/DP Surrogate Wastes with Supercritical Water Oxidation Technology," Sandia National Laboratories Report, SAND90-8229 (1990)
  6. Boukis N, Landvatter R, Habicht W, Franz G, "First Experimental SCWO Corrosion Results of Ni-base Alloys Fabricated as Pressure Tubes and Exposed to Oxygen Containing Diluted Hydrochloric Acid at<450℃, p=24 MPa," International Workshop on Supercritical Water Oxidation, Jacksonville, Florida, Feb. 6-9 (1995)
  7. Drake L, "Selecting Technologies for Destruction of the Chemical Weapons Stockpile," MIT Energy Laboratory Seminar, February (1993)
  8. Kane RD, Cuellar D, "Literature and Experience Survey on Supercritical Water Corrosion," CLI International Report, No. L941079K, July 19 (1994)
  9. Kim YS, "An Investigation of Corrosion Mechanism and Techniques for Mitigation on SCWO System for Hazardous Waste Destruction," Final Report, Andong National University (1999)
  10. Kim YS, Metals Mater., 4(2), 183 (1998)
  11. Kim YS, J. Corrosion Sci. Soc. Korea, 24(3), 212 (1995)
  12. Kim YS, J. Corrosion Sci. Soc. Korea, 21(3), 189 (1992)
  13. Kim YS, Kim J, J. Corrosion Sci. Soc. Korea, 26(6), 435 (1997)
  14. Latanision RM, Shaw RW, Co-Chairs, "Corrosion in Supercritical Water Oxidation Systems" -Summary of a Workshop Held at MIT May 6-7, 1993 (Report No. MIT-EL 93-006, 1993) (1993)
  15. Latanision RM, Corrosion, 51(4), 270 (1995)
  16. Mitton DB, Orzalli JC, Latanision RM, Proceedings of the Third International Symposium on Supercritical Fluids, France, October 17-19, 3, 43 (1994)
  17. Mitton DB, Orzalli JC, Latanision RM, "Physical Chemistry of Aqueous Systems-Meeting the Needs of Industry," 12(th) ICPWS, Begell House, New York, NY, 638 (1995)
  18. Mitton DB, Orzalli JC, Latanision RM, "Science and Technology," ACS Symposium Series 608, ACS, Washington, DC, 327 (1995)
  19. Mitton DB, Zhang SH, Han EH, Hautanen KE, Latanision RM, "Assessment of Corrosion and Failure Mechanisms in Supercritical Water Oxidation Systems," Proceedings of the 13(th) ICC, Melbourne, Australia, November 25-29 (1996)
  20. Mitton DB, Marrone PA, Latanision RM, J. Electrochem. Soc., 143(3), L59 (1996) 
  21. Mitton DB, Zhang SH, Quintana MS, Cline JA, Caputy N, Marrone PA, Latanision RM, "Corrosion Mitigation in SCWO Systems for Hazardous Waste Disposal," Paper No. 414, The Symposium on Corrosion in Supercritical Fluids, Corrosion 98, March 22-27, San Diego, CA (1998)
  22. Norby BC, "Supercritical Water Oxidation Bench-scale Testing Metallurgical Analysis Report," Idaho National Engineering Laboratory Report EGG-WTD-10675 (1993)
  23. Orzalli JC, "Preliminary Corrosion Studies of Candidate Materials for Supercritical Water Oxidation Reactor Systems," Master's Thesis, Department of Materials Science and Engineering, MIT (1994)
  24. Rice SF, Steeper RR, LaJeuness CA, "Destruction of Representative Navy Wastes Using Supercritical Water Oxidation," Sandia Report SAND94-8203 UC-402 (1993)
  25. Swallow KC, Ham D, Nucleus, 11 (1993)
  26. Swallow KW, Snow RH, Hazelebeck DA, Roberts AJ, "Science and Technology," ACS Symposium Series, 608, ACS, Washington, DC, 313 (1995)
  27. Tester JW, Holgate HR, Armellini FJ, Webley PA, Killilea WR, Hong GT, Barner HE, Emerging Technologies for Waste Management III, ACS Symposium Series, 518, Washington, DC, ACS, 35 (1993)
  28. Tebbal S, Kane RD, "Materials Selection in Hydrothermal Oxidation Processes," Paper No. 413, The Symposium on Corrosion in Supercritical Fluids, Corrosion 98, March 22-27, San Diego, CA (1998)
  29. The Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons and on their Destruction, Depositary Notification C.N.246.1994. TREATIES-5 (1994)
  30. The NATO Advanced Workshop, "Destruction of Military Toxic Waste," Naaldwijk, the Netherlands, May 22-27, 1994; US Army Research Office Report (1994)
  31. Thomas AJ, Gloyna EF, "Corrosion Behavior of High Grade Alloys in the Supercritical Waste Oxidation of Sludge," Technical Report CRWR 229, University of Texas at Austin (1991)
  32. Zilberstein VA, Bettinger JA, Ordway DW, Hong GT, "Evaluation of Materials Performance in a Supercritical Wet Oxidation System," Corrosion 95, NACE, paper 558 (1995)