Chemical Engineering Journal, Vol.170, No.2-3, 457-463, 2011
Manganese promoting effects on the Co-Ce-Zr-O-x nano catalysts for methane dry reforming with carbon dioxide to hydrogen and carbon monoxide
The Mn doping nanocrystalline Co-Ce-Zr-O-x catalysts were prepared by the co-precipitation method and characterized by various physico-chemical characterization techniques such as X-ray diffraction (XRD), temperature- programmed reduction (TPR), O-2 temperature-programmed desorption (O-2-TPD). X-ray photoelectron spectroscopy (XPS) and temperature-programmed hydrogenation (TPH). Their catalytic performances for methane reforming with CO2 to hydrogen and carbon monoxide were investigated. Adding Mn remarkably enhanced the catalytic activity and stability of the Co-Ce-Zr-O-x catalyst. The highest catalytic activity and long-term stability was obtained when the molar ratio of Mn/(Ce + Zr + Mn) was 10%. The improved catalytic behavior was closely related to the surface oxygen species and oxygen mobility. In comparison with that of Co-Ce-Zr-O-x catalyst, the migration of bulk lattice oxygen species became easier, and the content of surface oxygen species was higher for the Mn-doped nanocrystalline Co-Ce-Zr-O-x samples. TPH characterization showed that the surface coke species could be easily oxidized into COx for the Mn-doped nano cobalt-composite catalyst due to the higher amount of mobile oxygen. The Mn incorporation promoted the dispersion of the nano-sized CoOx crystallites. In comparison with the impregnated samples, CoOx species dispersed better in the co-precipitated catalysts. (C) 2011 Published by Elsevier B.V.
Keywords:Nano cobalt-composite catalyst;Mn doping;CeO2-ZrO2;Oxygen mobility;Methane dry reforming with CO2;High catalytic performance