화학공학소재연구정보센터
Chemical Engineering Research & Design, Vol.89, No.5A, 526-536, 2011
Foam granulation: Binder dispersion and nucleation in mixer-granulators
Traditional wet granulation method involves spraying of liquid binder onto a moving powder bed to granulate the powder particles in the granulator. A new alternative method of wet granulation has been developed where foam delivery of binder is used to granulate the powder particles. This study investigated binder distribution in wet granulation and focused on the nucleation stage, where nuclei are formed during the initial binder distribution. Nucleation experiments were used to study the formation of nuclei by the foam and spray delivery methods in a high shear mixer-granulator. The distribution of foams on a dynamic powder bed were also investigated by filming small portion of foams as they penetrated into moving powder beds under different powder flow conditions in a high shear mixer-granulator. Nucleation experiments in this study show that foam delivery tends to create a narrower nuclei size distribution during the early stage of wet granulation process compared to spray delivery at the same processing conditions, demonstrating the potential of foam granulation in achieving improved binder distribution. For foam delivery, the nuclei formation is influenced by the foam properties and powder flow conditions in the granulator. The experiments show that the narrowest nuclei size distribution is obtained by granulating with high-quality foam and intensive powder mixing conditions. Coarser nuclei are formed when low-quality foam is dispersed in a less intensively agitated powder. The interactions of foam quality and the powder flow pattern are discussed and two distinct wetting and nucleation mechanisms are proposed: (1) under bumping flow, a low-quality foam tends to induce localised wetting and nucleation. The wetting and nucleation is "foam drainage" controlled. (2) Under roping flow, foam will be dispersed by the motion of the agitated powder. The wetting and nucleation is "mechanical dispersion" controlled. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.