화학공학소재연구정보센터
Chemical Engineering Science, Vol.66, No.6, 1123-1131, 2011
Propane combustion in non-adiabatic microreactors: 1. Comparison of channel and posted catalytic inserts
The reduction in size of catalytic microreactors results in high heat and mass transfer rates and a significant increase in the surface area to volume ratio. A further increase in the catalytic surface area can be achieved in a scaled-down version of fixed bed reactors. Since micro-fixed bed reactors are often deemed impractical due to their large pressure drops, one could use precisely structured inserts to increase the surface area, enhance mixing and manipulate the flow distribution. Catalytic propane combustion in microreactors with multi-channel and posted inserts, which consist of multiple static structures (walls separating various channels and pillar-like structures, respectively) in the flow channel of a microreactor, is considered in this series of two papers. In this first paper, we present numerical comparison of multi-channel and posted catalytic inserts for non-adiabatic self-sustained propane combustion. The inserts are oriented axially along the flow direction. We show that channel and post microreactors have similar performance for low thermal conductivity of the inserts. The in-line arrangement of the posted structures is preferred over a staggered arrangement because the former provides higher propane conversion and more stable combustion. The role of thermal conductivity of the microreactor wall structure and the catalytic inserts is investigated. The thermal conductivity of the microreactor structure affects the performance of the posts but not the channels; this is contrary to the effect of catalyst insert thermal conductivity where it is vice-versa. The channel microreactor is more stable towards high flow-rate blow out limit, where as the post microreactor is significantly more stable at the lower flow-rate extinction limit. This results in stable operation of the post microreactor under more fuel-lean mixtures than the channel microreactor. (C) 2010 Elsevier Ltd. All rights reserved.