화학공학소재연구정보센터
Chemical Engineering Science, Vol.66, No.8, 1790-1801, 2011
High resolution experimental measurement of turbulent flow field in a high pressure homogenizer model and its implications on turbulent drop fragmentation
Particle image velocimetry is performed on a model of a high pressure homogenizer, scaled for qualitative similarity of the one phase turbulent flow field in a production scale homogenizer. Flow fields in gap entrance, gap and gap outlet chamber are obtained with high resolution. The measurements show gap flow development and formation of a turbulent wall adherent jet when exiting into the outlet chamber. Turbulent kinetic energy spectra show how the turbulent energy available for fragmentation is transported over distance along the jet centre axis. The high resolution images are also used together with a Kolmogorov-Hinze theory framework for discussing drop fragmentation together with a direct evaluation of disruptive stresses from measurements. For the turbulent inertial mechanism large drops experience high fragmenting force close to eight gap heights downstream of the gap exit where as this occurs closer to 20 gap heights for smaller drops. The turbulent viscous mechanism is most efficient at a downstream distance of eight gap heights into the outlet chamber for all drops sizes. (C) 2011 Elsevier Ltd. All rights reserved.