화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.4, 478-482, April, 2012
Influence of operating temperature on CO2-NH3 reaction in an aqueous solution
E-mail:
Although aqueous ammonia solution has been focused on the removal of CO2 from flue gas, there have been very few reports regarding the underlying analysis of the reaction between CO2 and NH3. In this work, we explored the reaction of CO2-NH3-H2O system at various operating temperatures: 40℃ , 20℃ , and 5℃ . The CO2 removal efficiency and the loss of ammonia were influenced by the operating temperatures. Also, infrared spectroscopy measurement was used in order to understand the formation mechanism of ion species in absorbent, such as NH2COO6(-), HCO3^(-), CO32^(-), and NH4+, during CO2, NH3, and H2O reaction. The reactions of CO2-NH3-H2O system at 20 ℃ and 40 ℃ have similar reaction routes. However, a different reaction route was observed at 5 ℃ compared to the other operating temperatures, showing the solid products of ammonium bicarbonates, relatively. The CO2 removal efficiency and the formation of carbamate and bicarbonate were strongly influenced by the operating temperatures. In particular, the analysis of the formation carbamate and bicarbonate by infrared spectroscopy measurement provides useful information on the reaction mechanism of CO2 in an aqueous ammonia solution.
  1. Yeh AC, Bai H, Sci. Total Environ., 228, 121 (1999)
  2. Bonenfant D, Mimeault M, Hausler R, Ind. Eng. Chem. Res., 42(14), 3179 (2003)
  3. Bai HL, Yeh AC, Ind. Eng. Chem. Res., 36(6), 2490 (1997)
  4. Huang HP, Chang SG, Dorchak T, Energy Fuels, 16(4), 904 (2002)
  5. Lee BD, Kim DM, Cho J, Park SW, Korean J. Chem. Eng., 22, 818 (2009)
  6. Seo Y, Jo SH, Ryu HJ, Bae DH, Ryu CK, Yi CK, Korean J. Chem. Eng., 24(3), 457 (2007)
  7. Lee DH, Choi WJ, Moon SJ, Ha SH, Kim IG, Oh KJ, Korean J. Chem. Eng., 25(2), 279 (2008)
  8. Kim YJ, You JK, Hong WH, Yi KB, Ko CH, Kim JN, Sep. Sci. Technol., 43(4), 766 (2008)
  9. Yeh JT, Resnik KP, Rygle K, Pennline HW, Fuel Process. Technol., 86(14-15), 1533 (2005)
  10. Kozak F, Petig A, Morris E, Rhudy R, Thimsen D, Energy Procedia., 1, 1419 (2009)
  11. Pilot scale of CO2 capture, www.powerspan.com.
  12. Park H, Jung YM, You JK, Hong WH, Kim JN, J. Phys. Chem. A, 112(29), 6558 (2008)
  13. You JK, Park H, Yang SH, Hong WH, Shin W, Kang JK, Yi KB, Kim JN, J. Phys. Chem. B, 112(14), 4323 (2008)
  14. Park SY, Yi KB, Ko CH, Park JH, Kim JN, Hong WH, Energy Fuels., 24, 3704 (2010)
  15. Li XN, Hagaman E, Tsouris C, Lee JW, Energy Fuels, 17(1), 69 (2003)
  16. Meng L, Burris S, Bui H, Pan WP, Anal. Chem., 77, 5947 (2005)
  17. Mani F, Peruzzini M, Stoppioni P, Green Chem., 8, 995 (2006)
  18. Guennoun Z, Pietri N, Couturier-Tamburelli I, Aycard JP, J. Phys. Chem. A, 110(24), 7738 (2006)
  19. Khanna RK, Moore MH, Spectrochim. Acta A., 55, 961 (1999)
  20. Wen NP, Brooker MH, J. Phys. Chem., 99(1), 359 (1995)
  21. Hisatsune IC, Can. J. Chem., 62, 945 (1984)