화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.4, 540-548, April, 2012
Experimental and numerical investigation on the pyrolysis of single coarse lignite particles
E-mail:
This paper reports on the mathematical modeling of the pyrolysis of single coarse lignite particles using a kinetics model coupled with a heat transfer model. The parallel reaction kinetics model of the lignite pyrolysis makes no assumptions about the activation energy distribution and the conversion of sub-reactions. The pyrolysis kinetics parameters were obtained on the basis of experimental data from thermogravimetric analysis (TGA) tests. The heat transfer model includes diffusive, convective and radiative heat transfer modes. The experimental investigations were carried out for single lignite particles in an electrically heated reactor. Measurements of the temperature and mass loss were performed during the pyrolysis in a nitrogen atmosphere. The model predictions for the temperature and mass loss histories agree well with the experimental data, verifying that the mathematical model accurately evaluates the pyrolysis of lignite particles. The effects of temperature and particle size on the pyrolysis time and final residual mass fraction were evaluated using the numerical model.
  1. Thomas T, Sandro SJ, Peter G, Int. J. Coal Geol.72, 72, 1 (2007)
  2. Sun S, Zhang J, Hu X, Qiu P, Qian J, Qin Y, Korean J. Chem. Eng., 26(2), 554 (2009)
  3. Lee JM, Kim DW, Kim JS, Korean J. Chem. Eng., 26(2), 506 (2009)
  4. Huang Y, Jin B, Zhong Z, Xiao R, Zhou H, Korean J. Chem. Eng., 24(4), 698 (2007)
  5. Zhang JW, Sun SZ, Hu XD, Sun R, Qin YK, Energy Fuels, 23, 2376 (2009)
  6. Fang F, Li ZS, Cai NS, Korean J. Chem. Eng., 26(5), 1414 (2009)
  7. Prompubess C, Mekasut L, Piumsomboon P, Kuchontara P, Korean J. Chem. Eng., 24(6), 989 (2007)
  8. Badzioch S, Hawksley PG, Ind. Eng. Chem. Proc. Des. Dev., 9, 521 (1970)
  9. Kobayashi H, Howard JB, Sarofim AF, Sixteenth symposium (international) on combustion, Cambridge, U.K. (1976)
  10. Anthony DB, Howard JB, AIChE J., 22, 625 (1976)
  11. Saxena SC, Prog. Energy Combust. Sci., 16, 55 (1990)
  12. Solomon RP, Serio MA, Suuberg EM, Prog. Energy Combust. Sci., 18, 133 (1992)
  13. Essenhigh RH, Chemistry of coal utilization, John Wiley & Sons Inc., New York (1981)
  14. Anthony DB, Howard JB, Hottel HC, Meissuer HP, Fuel., 55, 121 (1976)
  15. Sadhukhan AK, Gupta P, Saha RK, J. Anal. Appl. Pyrol., 81, 183 (2008)
  16. Sadhukhan AK, Gupta P, Saha RK, Bioresour. Technol., 100, 3134 (2009)
  17. Larfeldt J, Leckner B, Melaaen1 MC, Fuel., 79, 1637 (2000)
  18. Heidenreich CA, Yan HM, Zhang DK, Fuel, 78(5), 557 (1999)
  19. Chern JS, Hayhurst AN, Combust. Flame, 157(5), 925 (2010)
  20. Park WC, Atreya A, Baum HR, Combust. Flame, 157(3), 481 (2010)
  21. Agarwal PK, Genetti WE, Lee YY, Fuel., 63, 1157 (1984)
  22. Stubington JF, Sumaryono K, Fuel., 63, 1013 (1984)
  23. Tomeczek J, Kowol J, Can. J. Chem. Eng., 69, 286 (1990)
  24. Koch E, Juntgen H, Peters W, Brennstoff Chemie., 50, 366 (1969)
  25. Anthony DB, Howard JB, Hottel HC, Meissner HP, Fifteenth symposium (international) on combustion, Tokyo, Japan (1974)
  26. Adesanya BA , Pham HN, Fuel., 74, 896 (1995)
  27. Zhao Y, Serio MA, Solomon PR, Twenty-Sixth symposium (international) on combustion, Naples, Italy (1996)
  28. Merrick D, Fuel., 62, 540 (1983)
  29. Strezov V, Lucas JA, Evans TJ, Strezov L, J. Therm. Anal. Calorim., 78, 385 (2004)
  30. Hanrot F, Ablitzer D, Houzelot JL, Dirand M, Fuel., 73, 305 (1994)
  31. Volborth A, Coal science and chemistry, Elsevier, Amsterdam (1987)
  32. Miura K, Maki T, Energy Fuels, 12(5), 864 (1998)
  33. Miura K, Energy Fuels, 9(2), 302 (1995)