화학공학소재연구정보센터
Clean Technology, Vol.17, No.4, 363-369, December, 2011
전기투석에 의한 암모니아성질소의 제거 시 운전인자의 영향
Effects of Operating Parameters on the Removal Performance of Ammonia Nitrogen by Electrodialysis
E-mail:
초록
고농도의 암모니아성질소를 함유하는 폐수의 처리에 전기투석공정의 적용성이 실험적으로 평가되었다. 처리 성능은 전기투석공정의 운전인자 중 유입농도, 운전전압, 그리고 유속이 암모니아성질소의 제거효율에 미치는 영향으로 측정되었다. 한계전류밀도는 유입농도와 유입유속이 증가함에 따라 선형적으로 증가하였고, 유입농도에 따라 목표농도에 도달하는 시간은 직선적인 비례관계를 보였다. 상대적으로 큰 암모니아성질소의 이온당량전도도와 이온이동도로 인하여 유입유속의 증가는 제거속도를 지속적으로 증가시켰다. 또한 운전전압의 증가에 따라 제거속도는 증가하였다. 본 연구에 사용된 전기투석모듈에서 고농도의 암모니아성질소를 제거하는 운전조건으로 유입유속은 3.2 L/min, 운전전압은 한계전류밀도에 해당하는 전압의 80~90%가 추천된다.
To evaluate the feasibility of electrodialysis for ammonia nitrogen removal from wastewater, the effects of operating parameters such as diluate concentration, applied voltage and flow rate on the removal of ammonia nitrogen were experimentally estimated. The removal rate was evaluated by measuring the elapsed time for ammonia nitrogen concentration of diluate to reach 20 mg/L. Limiting current density (LCD) linearly increased with ammonia nitrogen concentration and flow rate. The elapsed time was linearly proportional to initial concentration of diluate. Due to relatively large equivalent ion conductivity and ion mobility of ammonia nitrogen, the removal rate increased consistently with flow rate. Increase in the applied voltage gave positive effect to removal rate. From the operation of the electrodialysis module used in this research, the flow rate of 3.2 L/min and 80~90% of applied voltage for LCD are recommended as the optimum operating condition for the removal from high concentrate ammonia nitrogen solution.
  1. Jung JY, Chung YC, Shin HS, Son DH, Water Research., 38, 347 (2004)
  2. Liao PH, Chen A, Lo KV, Bioresour. Technol., 54(1), 17 (1995)
  3. Li XZ, Zhao QL, Hao XD, Waste Management., 19, 409 (1999)
  4. Ali N, Halim NSA, Jusoh A, Endut A, Bioresource Technol., 101, 1459 (2010)
  5. Lee HH, Phae CG, J. of KSEE., 29(4), 460 (2007)
  6. Park SI, Cheong KH, Kim HY, Paik KJ, Korean J. Environ. Health., 31(4), 280 (2005)
  7. Yoon T, Noh B, Moon B, Korean J. Chem. Eng., 17(6), 652 (2000)
  8. Pontius FW, J. Am. Water Works Ass., 85(4), 12 (1993)
  9. Kim WH, Lee SH, J. Environ. Sci., 13(7), 661 (2004)
  10. Martin CJ, Kartinen EO, Condon J, Desalination., 102, 35 (1995)
  11. Strathmann H, Ion Exchange Membrane Separation Processes, Membrane Science and Technology Series, 9, Elsevier BV, Amsterdam, Netherlands, 147 (2004)
  12. Sata T, Ion Exchange Membranes: Preparation, Characterization, Modification and Application, The Royal Society of Chemistry, Cambridge, UK, 215 (2004)
  13. Kim KS, Kim SH, Jung IH, J. Korean Soc. Environ. Anal., 4(4), 241 (2001)
  14. Cowan DA, Brown JH, Ind. Eng. Chem., 51, 1445 (1959)
  15. Tanaka Y, J. Membr. Sci., 216(1-2), 149 (2003)
  16. Tanaka Y, J. Membr. Sci., 210(1), 65 (2002)
  17. Lee GH, Lee G, Clean Technol., 15(4), 280 (2009)
  18. Bard AJ, Faulkner LR, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, Inc., 62 (1980)
  19. Barthel JMG, Krienke H, Kunz W, Physical Chemistry of Electrolyte Solutions: Modern Aspects, Springer, New York, 70 (1998)