화학공학소재연구정보센터
Macromolecular Research, Vol.20, No.1, 21-29, January, 2012
Characterization of a Composite Membrane Based on SPAES/Sulfonated Montmorillonite for DMFC Application
E-mail:
Sulfonated poly(arylene ether sulfone) (SPAES)/sulfonated montmorillonite (SMMT) hybrid membranes were fabricated to evaluate their potential for use as direct methanol fuel cells(DMFCs). To minimize the loss of proton conductivity while reducing methanol permeability, an ion exchange method was used to prepare the SMMT including a sulfonic acid group. The SPAES/NMMT(-Na+) and SPAES/SMMT(-SO3H) hybrid membranes were prepared using a solution casting and evaporation method, and the NMMT/SMMT content in the composite membranes was controlled at 0.5-2.0 wt% based on the SPAES. The performances of the hybrid membranes for the DMFCs in terms of their mechanical and thermal properties, water uptake, water retention, methanol permeability, and proton conductivity were investigated. The mechanical and thermal properties of the SPAES membranes were improved with introduction of the NMMT and SMMT. Methanol permeability reduction was also obtained when the SMMT content and the sulfonation degree increased. The SPAES/SMMT composite membrane showed increased proton conductivity compared with the non-modified MMT composite membrane under the 100% relative humidity condition. As the modified MMT content increased, the proton conductivity increased and the methanol permeability decreased due to the monovalent ions located between the MMT layers. The ratio of methanol permeability to proton conductivity for the SPEAS/SMMT (2.0 wt%) composite membrane was higher than that of Nafion® 1135. This property makes hybrid membranes potential candidates for DMFC applications.
  1. Hasani-Sadrabadi MM, Emami SH, Moaddel H, J. Power Sources, 183(2), 551 (2008)
  2. Kumar GG, Uthirakumar P, Nam KS, Elizabeth RN, Solid State Ion., 180(2-3), 282 (2009)
  3. Lee W, Kim H, Kim TK, Chang H, J. Membr. Sci., 292(1-2), 29 (2007)
  4. Holmberg BA, Wang X, Yan YS, J. Membr. Sci., 320(1-2), 86 (2008)
  5. Lin YH, Li HD, Liu CP, Xing W, Ji XL, J. Power Sources, 185(2), 904 (2008)
  6. Neburchilov V, Martin J, Wang HJ, Zhang JJ, J. Power Sources, 169(2), 221 (2007)
  7. Bebin P, Caravanier M, Galiano H, J. Membr. Sci., 278(1-2), 35 (2006)
  8. Chang JH, Park JH, Park GG, Kim CS, Park OO, J. Power Sources, 124(1), 18 (2003)
  9. Wee JH, Lee KY, Kim SH, J. Power Sources, 165(2), 667 (2007)
  10. Jung DH, Cho SY, Peck DH, Shin DR, Kim JS, J. Power Sources, 118(1-2), 205 (2003)
  11. Gosalawit R, Chirachanchai S, Shishatskiy S, Nunes SP, J. Membr. Sci., 323(2), 337 (2008)
  12. Quartarone E, Carollo A, TomaSi C, Belotti F, Grandi S, Mustarelli P, Magistris A, J. Power Sources, 168(1), 126 (2007)
  13. Lee CH, Min KA, Park HB, Hong YT, Jung BO, Lee YM, J. Membr. Sci., 303(1-2), 258 (2007)
  14. Fu TZ, Cui ZM, Zhong SL, Shi YH, Zhao CJ, Zhang G, Shao K, Na H, Xing W, J. Power Sources, 185(1), 32 (2008)
  15. Fu RQ, Woo JJ, Seo SJ, Lee JS, Moon SH, J. Power Sources, 179(2), 458 (2008)
  16. Rhee CH, Kim HK, Chang H, Lee JS, Chem. Mater., 17, 1691 (2005)
  17. Kim DS, Park HB, Rhim JW, Lee YM, Solid State Ion., 176(1-2), 117 (2005)
  18. Mantuano DP, Dorella G, Elias RCA, Mansur MB, J. Power Sources, 159(2), 1510 (2006)
  19. Kornyshev AA, Kuznetsov AM, Spohr E, Ulstrup J, J. Phys. Chem., B 107, 3351 (2003)
  20. Rodgers MP, Shi ZQ, Holdcroft S, J. Membr. Sci., 325(1), 346 (2008)
  21. Xu T, Hou WQ, Shen XH, Wu H, Li XC, Wang JT, Jiang ZY, J. Power Sources, 196(11), 4934 (2011)
  22. Hudiono Y, Choi S, Shu S, Koros WJ, Tsapatsis M, Nair S, Micropor. Mesopor. Mater., 118, 427 (2009)
  23. Pereira F, Valle K, Belleville P, Morin A, Lambert S, Sanchez C, Chem. Mater., 20, 1710 (2008)
  24. Rhim JW, Park HB, Lee CS, Jun JH, Kim DS, Lee YM, J. Membr. Sci., 238(1-2), 143 (2004)
  25. Hasani-Sadrabadi MM, Dashtimoghadam E, Sarikhani K, Majedi FS, Khanbabaei G, J. Power Sources, 195(9), 2450 (2010)
  26. Thomassin JM, Pagnoulle C, Caldarella G, Germain A, Jerome R, Polymer, 46(25), 11389 (2005)