화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.6, 731-736, June, 2012
Structural and photoelectrochemical characterization of TiO2 nanowire/nanotube electrodes by electrochemical etching
E-mail:
TiO2 nanowire/nanotube electrodes were synthesized by anodization of titanium foils in ethylene glycol solution containing 0.5 wt% NH4F and 1 wt% water at 60 V for 6 h. The microstructure and morphology of the asprepared electrodes were investigated by XRD and SEM. A possible formation mechanism and oxidation parameters of nanocomposite structure were discussed. The relationship between structural characteristics of TiO2 nanowire/nanotube electrodes and its photoelectrochemical characterization were evaluated by electrochemical analyzer and photocatalytic degradation of methylene blue (MB) solution. Furthermore, these TiO2 nanowire/nanotube electrodes promoted the photoelectrochemical characterization due to the larger surface areas, enhanced light harvesting and electron transport rate. The results show that photocurrent density of 1.44mA/cm2 and photocatalytic degradation of 95.51% was achieved for TiO2 nanowire/nanotube electrodes, which were 0.55mA/cm2 and 20.52% higher than the TiO2 nanotube electrodes under a similar condition, respectively.
  1. Raja KS, Mahajan VK, Misra M, J. Power Sources, 159(2), 1258 (2006)
  2. Mor GK, Shankar K, Paulose M, Nano Lett., 5, 191 (2005)
  3. Bahnemann DW, Kholuiskaya SN, Dillert R, Appl. Catal.B., 32, 161 (2002)
  4. Kiss J, Ovari L, Oszkoa A, Surface Sci., 605, 1048 (2011)
  5. Baxter JB, Aydil ES, Sol. Energy Mater. Sol. Cells., 90, 607 (2006)
  6. Qui JJ, Jin ZG, Liu ZF, Liu XX, Liu GQ, Wu WB, Zhang X, Gao XD, Thin Solid Films, 515(5), 2897 (2007)
  7. Hosono E, Fujihara S, Honna I, Zhou HS, Adv. Mater., 17(17), 2091 (2005)
  8. Macak JM, Tsuchiya H, Ghicov A, Electrochem. Commun., 7, 1133 (2005)
  9. Varghese OK, Gong DW, Paulose M, Sens. Actuators, B., 93, 338 (2003)
  10. Malwadkar SS, Gholap RS, Awate SV, J. Photochem.Photobiol., A., 203, 24 (2009)
  11. Paulose M, Mor GK, Varghese OK, J. Photochem. Photobiol.,A., 178, 8 (2006)
  12. Idakiev V, Yuan ZY, Tabakova T, Su BL, Appl. Catal. A: Gen., 281(1-2), 149 (2005)
  13. Taveira LV, Macak JM, Tsuchiya H, Dick LFP, Schmuki P, J. Electrochem. Soc., 152(10), B405 (2005)
  14. Wang YH, Yang HX, Xu HM, Mater. Lett., 64, 164 (2010)
  15. Pang XY, He DM, Luo SL, Sens. Actuators, B., 137, 134 (2009)
  16. Ruan CM, Paulose M, Varghese OK, Mor GK, Grimes CA, J. Phys. Chem. B, 109(33), 15754 (2005)
  17. Inoue M, Murase A, Surf. Interface Anal., 37, 1111 (2005)
  18. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA, J. Phys. Chem. B, 110(33), 16179 (2006)
  19. Grimes CA, J. Phys. Chem., 15, 1451 (2007)
  20. Allam NK, Grimes CA, Sol. Energy Mater. Sol. Cells., 92, 1468 (2008)
  21. Lim JH, Choi J, Small., 3, 1504 (2007)
  22. Das PP, Mohapatra SK, Misra M, J. Phys. D: Appl. Phys., 41, 245103 (2008)
  23. Xiao ZL, Han CY, Welp U, Nano Lett., 2, 1293 (2002)
  24. Kim D, Ghicov A, Schmuki P, Electrochem. Commun., 10, 1835 (2008)
  25. Sun LD, Zhang S, Sun XW, J. Electroanal. Chem., 637, 6 (2009)
  26. Wang J, Lin ZQ, Chem. Mater., 20, 1257 (2008)
  27. Raja KS, Gandhi T, Misra M, Electrochem. Commun., 9, 1069 (2007)
  28. Chen W, Zhang HG, Hsing IM, Electrochem. Commun., 11, 1057 (2009)
  29. Wu ZB, Guo S, Wang HQ, Electrochem. Commun., 11, 1692 (2009)
  30. Jang JS, Kim HG, Joshi UA, Int. J. Hydrog. Energy., 33, 5975 (2008)
  31. Yao WT, Yu SH, Liu SJ, Chen JP, Liu XM, Li FQ, J. Phys. Chem. B, 110(24), 11704 (2006)
  32. Wu ZB, Dong F, Zhao WR, Nanotechnology., 20, 5701 (2009)
  33. Lu B, Li H, Liao L, Nanotechnology., 19, 5605 (2008)