화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.5, 657-667, May, 2012
PRSV equation of state parameter modeling through artificial neural network and adaptive network-based fuzzy inference system
E-mail:
Two different modeling methods have been proposed to relate the Peng-Robinson-Stryjek-Vera (PRSV) parameter, κ1, to some common thermodynamic constants, including critical temperature (Tc), critical pressure (Pc), acentric factor (ω) and molecular weight (Mw). The methods are artificial neural network (ANN) and adaptive networkbased fuzzy inference System (ANFIS). A set of 159 data points (116, 23 and 20) was used for construct training, validating and testing, respectively. The radius parameter of ANFIS was determined through genetic algorithm (GA) optimization technique. The ANN and especially ANFIS results are in a good agreement with most of the compound groups.
  1. Rpeid RC, Prausnitz JM, Poling BE, The properties of gases and liquids, 4th Ed., McGraw-Hill, New York (1987)
  2. Stryjek R, Vera JH, Can. J. Chem. Eng., 64, 323 (1986)
  3. Proust P, Vera JH, Can. J. Chem. Eng., 67, 170 (1989)
  4. Rajasekaran S, Vijayalakshmi-Pai GA, Neural networks, fuzzy logic, and genetic algorithms, Prentice-Hall, India (2007)
  5. Himmelblau DM, Korean J. Chem. Eng., 17(4), 373 (2000)
  6. Hussain MA, Aroua MK, Yin CY, Rahman RA, Ramli NA, Korean J. Chem. Eng., 27(6), 1864 (2010)
  7. Park TC, Kim US, Kim LH, Jo BW, Yeo YK, Korean J. Chem. Eng., 27(4), 1063 (2010)
  8. Zhang Y, Ding Y, Wu Z, Kong L, Chou T, Korean J. Chem. Eng., 24(6), 1118 (2007)
  9. Shokri A, Hatami T, Khamforoush M, J. Supercrit. Fluids., 58, 49 (2011)
  10. Zahedi G, Azizi S, Hatami T, Sheikhattar L, The Open Chem.Eng. J., 4, 21 (2010)
  11. Godini HR, Ghadrdan M, Omidkhah MR, Madaeni SS, Desalination, 265(1-3), 11 (2011)
  12. Shokrian M, Sadrzadeh M, Mohammadi T, J. Membr. Sci., 346(1), 59 (2010)
  13. Safamirzaei M, Modarress H, Mohsen-Nia M, Fluid Phase Equilib., 266(1-2), 187 (2008)
  14. Nguyen VD, Tan RR, Brondial Y, Fuchino T, Fluid Phase Equilib., 254(1-2), 188 (2007)
  15. Klincewicz KM, Reid RC, AIChE J., 30, 137 (1984)
  16. Tyn MT, Calus WF, Processing., 21, 16 (1975)
  17. Hagan MT, Demuth HB, Beale M, Neural Network Design, PWS, Boston, MA (1996)
  18. Niculescu SP, J. Mol. Struct., 622, 71 (2003)
  19. MATLAB User’s Guide (2007)
  20. Anderson D, McNeill G, Artificial neural networks technology, Data&Analysis Center for Software (1992)
  21. Jang JSR, IEEE International Conference on Syst. Man Cybernet., 23, 665 (1993)
  22. Takagi T, Sugeno M, IEEE Trans. Syst. Man Cybernet., 15, 116 (1985)
  23. Sugeno M, Kang GT, Fuzzy Sets Syst., 28, 15 (1998)
  24. Kulkarni AD, Computer vision and fuzzy neural systems, Prentice-Hall, Englewood Cliffs, NJ (2001)
  25. Entchev E, Yang LB, J. Power Sources, 170(1), 122 (2007)
  26. Perendeci A, Arslan S, Tanyola A, Celebi SS, Bioresour. Technol., 100, 4579 (2009)
  27. Chen X, Wang N, Chem. Eng. J., 150(2-3), 527 (2009)
  28. Buyukbingol E, Sisman A, Akyildiz M, Alparslan FN, Adejare A, Bioorg. Med. Chem., 15, 4265 (2007)
  29. Prausnitz JM, Lichtenthaler RN, Azevedo EGD, Molecular thermodynamics of fluid-phase equilibria, 3th Ed., Prentice Hall, Englewood Cliffs, NJ (1999)