Electrochimica Acta, Vol.56, No.5, 2276-2283, 2011
Computational fluid dynamics simulation of polymer electrolyte membrane fuel cells operating on reformate
Carbon monoxide (CO) can extremely diminish the polymer electrolyte membrane fuel cell (PEMFC) performance since it is preferentially absorbed on the platinum catalyst layer blocking and reducing the number of catalyst sites available for the hydrogen oxidation reaction. To gain a good insight of CO poisoning characteristics so as to provide a remedial solution for CO-poisoned PEMFCs, a two-dimensional, isothermal, and single phase CO poisoning numerical model taking into account the transport phenomena, electrochemical reactions and multi-component gas mixture transport is developed for such purpose. Linear and bridged-bonded adsorbed CO modes were considered to occur in parallel on the highly dispersed nano-crystalline Pt/C and PtRu/C catalysts. By performing computational fluid dynamics numerical simulations, this study clearly demonstrates the CO poisoning mechanisms and characteristics of PEMFCs. The numerical results obtained are in reasonably good agreement with the experimental data showing the predictive capability of the model. (C) 2010 Elsevier Ltd. All rights reserved.