화학공학소재연구정보센터
Electrochimica Acta, Vol.56, No.11, 3981-3987, 2011
Cyclability study of silicon-carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy
The effects of carbonization process and carbon nanofiber/nanotube additives on the cycling stability of silicon-carbon composite anodes were investigated by monitoring the impedance evolution during charge/discharge cycles with electrochemical impedance spectroscopy (EIS). Three types of Si-C anodes were investigated: the first type consisted of Si nanoparticles incorporated into a network of carbon nanofibers (CNFs) and multi-walled carbon nanotubes (MWNTs), with annealed polymer binder. The second type of Si-C anodes was prepared by further heat treatment of the first Si-C anodes to carbonize the polymer binder. The third Si-C anode was as same as the second one except no CNFs and MWNTs being added. Impedance analysis revealed that the carbonization process stabilized the Si-C anode structure and decreased the charge transfer resistance, thus improving the cycling stability. On the other hand, although the MWNTs/CNFs additives could enhance the electronic conductivity of the Si-C anodes, the induced inhomogeneous structure decreased the integrity of the electrode, resulting in a poor long term cycling stability. Published by Elsevier Ltd.