Electrochimica Acta, Vol.56, No.19, 6764-6770, 2011
Liquid-liquid electro-organo-synthetic processes in a carbon nanofibre membrane microreactor: Triple phase boundary effects in the absence of intentionally added electrolyte
An amphiphilic carbon nanofibre membrane electrode (ca. 50 nm fibre diameter, 50-100 mu m membrane thickness) is employed as an active working electrode and separator between an aqueous electrolyte phase (with reference and counter electrode) and an immiscible organic acetonitrile phase (containing only the redox active material). Potential control is achieved with a reference and counter electrode located in the aqueous electrolyte phase, but the electrolysis is conducted in the organic acetonitrile phase in the absence of intentionally added supporting electrolyte. For the one-electron oxidation of n-butylferrocene coupled to perchlorate anion transfer from aqueous to organic phase effective electrolysis is demonstrated with an apparent mass transfer coefficient of m = 4 x 10(-6) m s(-1) and electrolysis of typically 1 mg n-butylferrocene in a 100 mu L volume. For the two-electron reduction of tetraethyl-ethylenetetracarboxylate the apparent mass transfer coefficient m = 4 x 10(-6) m s(-1) is lower due to a less extended triple phase boundary reaction zone in the carbon nanofibre membrane. Nevertheless, effective electrolysis of up to 6 mg tetraethyl-ethylenetetracarboxylate in a 100 mu L volume is demonstrated. Deuterated products are formed in the presence of D2O electrolyte media. The triple phase boundary dominated mechanism and future microreactor design improvements are discussed. (C) 2011 Elsevier Ltd. All rights reserved.
Keywords:Carbon nanofibre membrane;Microreactor;Deuteration;Electrolysis;Electrosynthesis;Supporting electrolyte;Voltammetry;Ferrocene;Olefin;Isotope