화학공학소재연구정보센터
Electrophoresis, Vol.32, No.17, 2282-2291, 2011
Electrokinetic motion of a deformable particle: Dielectrophoretic effect
Electrokinetics-induced motion and deformation of a hyperelastic particle confined in a slit microchannel has been numerically investigated for the first time with a full consideration of the fluid-particle-electric field interactions and the dielectrophoretic (DEP) effect. When the initial orientation of a cylindrical particle with respect to the applied electric field, theta(p0), is 90 degrees, the particle tends to curl up as a "C'' shape when moving from left to right. The electrokinetics-induced particle deformation is due to the joint effects of the shear force arising from the non-uniform Smoluchowski slip velocity on the particle surface and the asymmetric DEP force with respect to the center of the deformed particle arising from the spatially non-uniform electric field surrounding the particle. The electrokinetics-induced particle deformation is opposite to that of a particle moving in the same direction subjected to a pressure-driven flow. When the initial particle orientation is 0