화학공학소재연구정보센터
Electrophoresis, Vol.32, No.20, 2874-2883, 2011
A novel cationic triblock copolymer as noncovalent coating for the separation of proteins by CE
A novel noncovalent adsorbed coating for CE has been prepared and explored. This coating was based on quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(ethylene oxide)-block-poly(2-(dimethylamino)ethyl methacrylate) (QDED) triblock copolymer which was synthesized by atomic transfer radical polymerization (ATRP) in our laboratory. The polycationic polymer and the negatively charged fused-silica surface attracted each other through electrostatic interactions and hydrogen bonds. It was demonstrated that the coated capillaries provided an electroosmotic flow with reverse direction, and the magnitude of the electroosmotic flow can be modulated by varying the molecular mass of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) block and pH value of the buffer. The effects of the molecular mass of PDMAEMA block in QDED triblock copolymer and pH value of the buffer on the separation of basic proteins were investigated in detail. The triblock copolymer coatings showed higher separation efficiency, better migration time repeatability and would apply to wider range of pH than bare fused-silica capillary when used in separating proteins. Proteins from egg white were also separated through this QDED triblock copolymer-coated capillary. These results demonstrated that the QDED triblock copolymer coatings are suitable for analyzing biosamples.