화학공학소재연구정보센터
Energy, Vol.36, No.7, 4089-4096, 2011
Development of a mathematical model for predicting water vapor mass generated in micro-explosion
This paper describes a mathematical model for predicting the mass of water vapor generated in micro-explosion. First, a single droplet experiment was carried out. A W/O (water/oil) emulsified fuel droplet suspended by a thermocouple was heated by a halogen spot heater, and micro-explosion was observed using a high-speed video camera. The progress of the coalescence of the dispersed water droplet was observed while droplet was heated, and an aggregated water droplet was formed in the oil layer. Based on the measured micro-explosion characteristics, a mathematical model for predicting water vapor mass generated in micro-explosion was proposed. The size of the aggregated water droplet just before micro-explosion was measured to verify the proposed mathematical model. Under certain assumptions, mass and energy conservation equations were applied to micro-explosion process, and an equation to calculate water vapor mass generated in micro-explosion was derived. The derived equation and some measurement results provide enough information to calculate water vapor mass generated in micro-explosion. The calculated diameter of the water droplet, which changed to vapor in micro-explosion, was compared to that of the aggregated water droplet just before micro-explosion. The calculated results roughly agreed with experimental ones, and the validity of the proposed model was verified. (C) 2011 Elsevier Ltd. All rights reserved.