Korean Journal of Chemical Engineering, Vol.29, No.8, 1025-1037, August, 2012
Analytical investigation of temperature distribution and flame speed across the combustion zones propagating through an iron dust cloud utilizing a three-dimensional mathematical modeling
E-mail:
In the analytical model of iron dust cloud combustion presented in this article, by solving the 3D energy equations, the gas temperature distribution in the channel and a new equation for flame speed are obtained. This equation can determine the relationship between flame speed and particle radius and dust concentration. The equations are written in two limiting cases: lean and rich mixtures. Flame structure consists of preheat, reaction, and post-flame zones for the lean mixture and preheat and reaction zones for the rich mixture. Equations in both mixture conditions are solved using the finite Fourier transform method. By solving the energy equations in each zone and matching the temperature and heat flux at the interfacial boundaries, algebraic equations of flame speed are obtained. The obtained gas temperature distribution in different flame zones in the channel and also flame speed changes in terms of particles’ radius, equivalence ratio, and channel width in both lean and rich mixtures are presented in the results section.
- Bidabadi M, Fereidooni J, Tavakoli R, Mafi M, Korean J. Chem. Eng., 28(2), 461 (2011)
- Bidabadi M, Barari G, Azimi M, Mafi M, Int. J. Recent Trend. Eng., 1(5), 26 (2009)
- Baker WE, Tang MJ, Gas, dust and hybrid explosions, Elsevier, New York (1991)
- Cashdollar KL, J. Loss Prev. Process Ind., 9(1), 65 (1996)
- Dahoe AE, Zevenbergen JF, Lemkowitz SM, Scarlett B, J. Loss Prev. Process Ind., 9(1), 33 (1996)
- Hertzberg M, Zlochower IA, Cashdollar KL, 24th Symposium (international) on Combustion, Pittsburgh, PA: The Combustion Institute, 1827 (1992)
- Tamanini F, Valiulis JV, J. Loss Prev. Process Ind., 9(1), 105 (1996)
- Cashdollar KL, Hertzberg M, Zlochower IA, 22th Symposium (international) on Combustion, Pittsburgh, PA: The Combustion Institute, 1757 (1988)
- Dreizin EL, Hoffmann VK, Combust. Flame, 118(1-2), 262 (1999)
- Han OS, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T, J. Loss Prev. Process Ind., 14(3), 153 (2001)
- Matsuda T, Yashima M, Nifuku M, Enomoto H, J. Loss Prevent. Proc., 14(6), 449 (2001)
- Chen JL, Dobashi R, Hirano T, J. Loss Prev. Process Ind., 9(3), 225 (1996)
- Bidabadi M, Rahbari A, Combust. Explo. Shock+., 45(3), 278 (2009)
- Sun JH, Dobashi R, Hirano T, 27th Symposium (International) on Combustion, Pittsburgh, PA: The Combustion Institute, 2405 (1998)
- Sun JH, Dobashi R, Hirano T, Combust. Sci. Technol., 150(1-6), 99 (2000)
- Sun JH, Dobashi R, Hirano T, J. Loss Prevent. Proc., 14, 463 (2001)
- Sun JH, Dobashi R, Hirano T, Combust. Flame, 134(4), 381 (2003)
- Sun JH, Dobashi R, Hirano T, J. Loss Prevent. Proc., 19, 135 (2006)
- Beach DB, Rondinone AJ, Sumpter BG, Labinov SD, Richards RK, J. Energy Res.-ASME., 129, 29 (2007)
- Ballal DR, Proc R. Soc. Lond. A., 385, 21 (1983)
- Dreizin EL, Combust. Flame., 105(4), 541 (1996)
- Goroshin S, Bidabadi M, Lee JHS, Combust. Flame., 105, 147 (1996)
- Wu HC, Chang RC, Hsiao HC, J. Loss Prevent. Proc., 22, 21 (2009)
- Tang FD, Goroshin S, Higgins A, Lee, J, Proc. Combust. Inst., 32(2), 1905 (2009)
- Hirano T, Sato Y, Sato K, J. Saw. Oxid. Commun., 6, 113 (1984)
- Incropera FP, De Witt DP, Bergman TL, Lavine AS, Fundamentals of heat and mass transfer, John Wiley & Sons Inc., New York (2007)
- Goroshin S, Kolbe M, Lee JHS, Proc. Combust. Inst., 28, 2811 (2000)
- Myint-U D, Debnath L, Linear partial differential equations for scientists and engineers, Birkhauser, Berlin (2007)
- Huang Y, Risha GA, Yang V, Yetter RA, Combust. Flame, 156(1), 5 (2009)
- Huang Y, Risha GA, Yang V, Yetter RA, In Proceedings of the 43rd Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 10 (2005)
- Goroshin S, Fomenko I, Lee JHS, Proc. Combust. Inst., 26, 1961 (1996)
- Jadidi M, Bidabadi M, Hosseini ME, P. I. Mech. Eng. G-J Aer., 223, 915 (2009)
- Bidabadi M, Haghiri A, Rahbari A, J. Hazard. Mater., 176(1-3), 146 (2010)
- Turns SR, An introduction to combustion, McGraw-Hill, Boston (2000)
- Green DW, Perry RH, Perry’s chemical engineers’ handbook, McGraw-Hill, New York (2008)
- Steinberg TA, Wilson DB, Stoltzfus JM, in Flammability and sensitivity of materials in oxygen-enriched atmosphere, William TR, Ting CC, Steinberg TA Eds., ASTM Publication, Ann Arbor (1997)
- Bidabadi M, PhD Thesis, MC Gill University, Canada (1995)
- Arpaci VS, Conduction heat transfer, Addison-Wesley, Reading, MA (1966)
- Wylie CR, Barrett LC, Advanced engineering mathematics, McGraw-Hill, New York (1995)
- Zeldovich TB, Barenblatt GI, Librovich VD, Makhviladze GM, The mathematical theory of combustion and explosions, Consultants Bureau, New York (1985)
- Markstain GH, AIAA J., 1(3), 550 (1963)
- Gordon AS, Drew CM, Prentice JL, Knipe RH, AIAA J., 6(4), 577 (1968)