화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.8, 994-1003, August, 2012
Analysis and prediction of indoor air pollutants in a subway station using a new key variable selection method
E-mail:
A new key variable selection and prediction model of IAQ that can select key variables governing indoor air quality (IAQ), such as PM10, CO2, CO, VOCs and formaldehyde, are suggested in this paper. The essential problem of the prediction model is the question of which of the original variables are the most important for predicting IAQ. The next issue is determining the number of key variables that should be ranked. A new index of discriminant importance in the projection (DIP) of Fisher’s linear discriminant (FLD) is suggested for selecting key variables of the prediction models with multiple linear regression (MLR) and partial least squares (PLS), as well as for ranking the importance of input measurement variables on IAQ prediction. The prediction models were applied to a real IAQ dataset from telemonitoring data (TMS) in a metro system. The prediction results of the model using all variables were compared with the results of the model using only key variables of DIP. It shows that the use of our new variable selection method cannot only reduce computational effort, but will also enhance the prediction performances of the models.
  1. Chiang LH, Russell E, Braatz RD, Chem. Int. Lab. Syst., 50, 243 (2000)
  2. Duda RO, Hart PE, Stork DG, Pattern classification, 2nd Ed., John Wiley & Sons, New York (2001)
  3. Furuya K, Kudo Y, Okinaga K, Yamukki M, Takahashi S, Araki Y, Hisamatsu Y, J. Trace and Microprobe Techniques., 19, 469 (2001)
  4. Hastie T, Tibshirani R, Friedman J, The elements of statistical learning, Springer, USA (2009)
  5. Kang SN, Hwang HJ, Park YM, Kim HK, Ro CU, Environ.Sci. Technol., 42, 9051 (2008)
  6. Kim M, Rao AS, Yoo C, Ind. Eng. Chem. Res., 48(13), 6363 (2009)
  7. Kim MJ, Kim MH, Kim YS, Yoo CK, Multivariate interpretation on the parameter correlation for over-determined system modeling of ASM model, 10th IWA Conference on Instrumentation Control and Automation (2009)
  8. Kim NJ, Lee SS, Jeon JS, Kim JH, Kim MY, Evaluation of Factors to Affect PM-10 Concentration in Subway Station, Proceedings of Korean Society for Atmospheric Environment, 571 (2006)
  9. Kim YS, Kim JT, Kim IW, Kim JC, Yoo CK, Environ.Eng. Sci., 27, 721 (2010)
  10. Kim YS, Kim MH, Yoo CK, J. Hazard. Mater., 183(1-3), 441 (2010)
  11. Kim Y, Kim M, Lim J, Kim JT, Yoo C, J. Hazard. Mater., 183(1-3), 448 (2010)
  12. King JR, Jackson DA, Environmetrics., 10, 67 (1999)
  13. Kourti T, Anal. Bioanal. Chem., 384, 1043 (2006)
  14. Kwag HK, Jin KW, Kim W, Yang WS, Choi SJ, Park DU, Kor. J. Env. Hlth., 31, 379 (2005)
  15. Liu SS, Liu HL, Yin CS, Wang LS, J. Chem. Inf. Comput.Sci., 43, 964 (2003)
  16. Macgregor JF, Jaeckle C, Kiparissides C, Koutoudi M, AIChE J., 40(5), 826 (1994)
  17. Murruni LG, Solanes V, Debray M, Kreiner AJ, Davidson J, Davidson M, Atoms. Environ., 43, 4577 (2009)
  18. Nieuwenhuijsen MJ, Gomez-Perales JE, Colvile RN, Atmos.Environ., 41, 7995 (2007)
  19. Paivi A, Tarja YT, Anu K, Timo M, Anne H, Kaarle H, Mika RI, Risto H, Tarja K, Matti J, Atmos. Environ., 39, 5059 (2005)
  20. Ramadan Z, Song XH, Hopke PK, Johnson MJ, Scow KM, Anal. Chim. Acta., 446, 233 (2001)
  21. Rigol AM, Camps M, Juan AD, Rauret G, Vidal M, Environ.Sci. Techonol., 42, 4029 (2008)
  22. Yamamoto T, Shimameguri A, Ogawa M, Hashimoto I, Kano V, Application of Statistical Process Monitoring with External Analysis to an Industrial Monomer Plant, IFAC Symposium on Advanced Control of Chemical Processes, 405 (2004)