화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.2, 611-616, March, 2012
Synthesis of PEG hydrogel with dityrosine for multi-functionality and pH-dependent fluorescence
E-mail:
A poly(ethylene glycol) (PEG)-based hydrogel was synthesized by the copolymerization of PEG diacrylate (PEGDA) and PEG methacrylate (PEGMA) linked with N,N0-di(tert-butoxycarbonyl)-dityrosine (DBDY). Owing to the presence of the dityrosine derivative DBDY, the resulting hydrogel exhibited pH-dependent fluorescence and contained multi-functional groups (1 carboxylic acid group and 2 amine groups protected by tert-butoxycarbonyl groups). A high molecular mass chemical can be bound to DBDY in the hydrogel through one of these functional groups (i.e. the formation of amide bonding). Then the porosity of the resulting hydrogel is increased by the action of an enzyme such as proteinase. Also, if a drug is bound directly to DBDY, the enzyme can control its detachment. Hence, the PEGMA.DBDY hydrogel could be useful for drug release near the site of the disease where the expression level of a certain enzyme is especially high (e.g. matrix metalloproteinases in cancers). Binding of a UV-absorbing compound to DBDY was monitored by measuring the change in fluorescence intensity, which is known as the phenomenon of fluorescence resonance energy transfer (FRET).
  1. Hoffman AS, Afrassiabi A, Dong LC, J. Control. Release., 4, 213 (1986)
  2. Brannon-Peppas L, Peppas NA, J. Control. Release., 8, 267 (1989)
  3. Gander B, Gurny R, Doelker E, Peppas NA, J. Control. Release., 5, 271 (1988)
  4. Peppas NA, Klier J, J. Control. Release., 16, 203 (1991)
  5. Inoue T, Chen GH, Nakamae K, Hoffman AS, J. Control. Release., 49, 167 (1997)
  6. Merrill EW, Dennison KA, Sung C, Biomaterials., 14, 1117 (1993)
  7. Zhang XZ, Sun GM, Chu CC, Eur. Polym. J., 40, 2251 (2004)
  8. Zhang XZ, Sun GM, Wu DQ, Chu CC, J. Mater. Sci.: Mater. Med., 15, 865 (2004)
  9. Zhang XZ, Wu DW, Chu CC, Biomaterials., 25, 4719 (2004)
  10. Kim SJ, Yoon SG, Lee YM, Kim SI, Sens. Actuators B: Chem., 88, 286 (2003)
  11. Stearns ME, Wang M, Cancer Res., 53, 878 (1993)
  12. Davies B, Waxman J, Wasan H, Abel P, Williams G, Krausz T, Neal D, Thomas D, Hanby A, Balkwill F, Cancer Res., 53, 5365 (1993)
  13. Zucker S, Hymowitz M, Conner C, Zarrabi H, Hurewitz AN, Matrisian L, Boyd D, Nicolson G, Montana S, Ann. N. Y. Acad. Sci., 878, 212 (1999)
  14. Moses MA, Wiederschain D, Loughlin KR, Zurakowski D, Lamb CC, Freeman MR, Cancer Res., 58, 1395 (1998)
  15. Fang J, Shing Y, Wiederschain D, Yan L, Butterfield C, Jackson G, Harper J, Tamvakopoulos G, Moses M, Proc. Natl. Acad. Sci. U. S. A., 97, 3884 (2000)
  16. Giulivi C, Davies KJA, Methods Enzymol., 233, 363 (1994)
  17. Giulivi C, Davies KJA, J. Biol. Chem., 276, 24129 (2001)
  18. Malencik DA, Anderson SR, Amino Acids., 25, 233 (2003)
  19. Briza P, Winkler G, Kalchhauser H, Breitenbach M, J. Biol. Chem., 261, 4288 (1986)
  20. Li J, Hodgeman BA, Christensen BM, Insect Biochem. Mol. Biol., 26, 309 (1996)
  21. Nomura K, Suzuki N, Arch. Biochem. Biophys., 319, 525 (1995)
  22. LaBella F, Waykole P, Queen G, Biochem. Biophys. Res. Commun., 30, 333 (1968)
  23. Malencik DA, Sprouse JF, Swanson CA, Anderson SR, Anal. Biochem., 242, 202 (1996)
  24. Lapienis G, Penczek S, J. Polym. Sci. A: Polym. Chem., 42(7), 1576 (2004)