화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.2, 617-622, March, 2012
Cooling domain prediction of HFCs and HCFCs refrigerant with Joule-Thomson coefficient
E-mail:
Chlorine refrigerants are considered global warming materials. Chlorinated refrigerants are being replaced with low chlorine content refrigerants, such as HFCs (CH3CF3, CH3CHF2, CH2FCF3, CHF2CF3, CH2F2). Predicting the cooling domain in the operating temperature.pressure range of refrigerants is very important. In this study, the cooling domain for the nonchlorine refrigerants was predicted and compared with the value for chlorine refrigerants, HCFCs (CH3CClF2, CH3CCl2F, CHClFCF3, CHCl2CF3, CHClF2). The cooling domain was depicted with Joule-Thomson coefficient (mJT). The mathematical algorithm of the Joule-Thomson coefficient was derived from the cubic type equation of states, van der Waals (vdW), Redlich-Kwong (RK), Soave-Redlich-Kwong (SRK), Peng-Robinson (PR). Joule-Thomson coefficients had different types with the equation of state. The maximum inversion pressure and corresponding temperature were proposed from each inversion curve. From these results, the refrigeration working domains of the green refrigerants were predicted.
  1. Calm JM, International Journal of Refrigeration., 31, 1123 (2008)
  2. Magahri A, Safaei Z, Sarhangian S, Cryogenics., 48, 48 (2008)
  3. Haghighi B, Laee MR, Matin NS, Cryogenic., 43, 393 (2003)
  4. Matin NS, Haghighi B, Fluid Phase Equilib., 175(1-2), 273 (2000)
  5. Nichita DV, Leibovici CF, Fluid Phase Equilib., 246(1-2), 167 (2006)
  6. Sreedhar R, Sreedhar AK, Infrared Physics & Technology., 39, 451 (1998)
  7. Haghighi B, Hussaindokht MR, Bozorgmehr MR, Maton NS, Chinese Chemical Letters., 18, 1154 (2007)
  8. Wisniak J, Avraham H, Thermochim. Acta, 286(1), 33 (1996)
  9. Smith JM, Van Ness HC, Abbott MM, Introduction to Chemical Engineering Thermodynamics, 7th ed., McGraw-Hill, NY (2005)
  10. Derking JH, ter Brake HJM, Sirbi A, Linder M, Rogalla H, Cryogenic., 49, 151 (2009)
  11. Vrabec J, Kedia GK, Hasse H, Cryogenic., 45, 253 (2005)
  12. Schoen M, Physica A., 270, 353 (1999)
  13. Marcus Y, J. Supercrit. Fluids, 38(1), 7 (2006)
  14. Feroiu V, Geana D, Fluid Phase Equilib., 207(1-2), 283 (2003)
  15. Jeong K, Im J, Lee G, Lee YJ, Kim H, Fluid Phase Equilib., 251(1), 63 (2007)
  16. Wang M, Sato Y, Iketani T, Takishima S, Masuoka H, Watanabe T, Fukasawa Y, Fluid Phase Equilib., 232(1-2), 1 (2005)
  17. Lim JS, Seong G, Byun HS, Fluid Phase Equilib., 259(2), 165 (2007)
  18. Im J, Lee G, Lee J, Kim H, Fluid Phase Equilib., 251(1), 59 (2007)
  19. Eslami H, Azin R, Fluid Phase Equilib., 209(2), 245 (2003)