Journal of Industrial and Engineering Chemistry, Vol.18, No.2, 715-719, March, 2012
Enhancing hydrogen production efficiency in microbial electrolysis cell with membrane electrode assembly cathode
E-mail:
Microbial electrolysis cell is a device which can produce hydrogen gas from biomass through microbial catalyzed process and thus reduce the organic matter. For the real application in wastewater treatment, the scale-up of microbial electrolysis cell is an important issue but few tests were conducted with relatively large size. In this study, a 3.7 L microbial electrolysis cell (liquid volume 3.2 L) equipped with a membrane electrode assembly cathode was designed and tested. The internal resistance was examined, hydrogen generation and organic removal performance was investigated under different conditions. A maximum overall hydrogen efficiency of 41% was achieved at an applied voltage of 1.2 V with acetate as substrate, corresponding to a volumetric hydrogen production rate of approximately 0.12 m3 H2/m3 reactor liquid volume/day. The results obtained in this study could help to further develop pilot-MEC for practical applications.
Keywords:Microbial electrolysis cell;Hydrogen production;Membrane electrode assembly;Organic removal;Stainless steel mesh
- Chaudhuri SK, Lovley DR, Nat. Biotechnol., 21, 1229 (2003)
- Oh S, Logan BE, Water Res., 39, 4673 (2005)
- Scholz F, Schro¨ der U, Nat. Biotechnol., 21, 1151 (2003)
- Rabaey K, Verstraete W, Trends Biotechnol., 23, 291 (2005)
- Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W, Appl. Environ.Microbiol., 70, 5373 (2004)
- Jia YH, Tran HT, Kim DH, Oh SJ, Park DH, Zhang RH, Ahn DH, Bioprocess.Biosyst. Eng., 31, 315 (2008)
- Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W, Environ. Sci. Technol., 40, 3388 (2006)
- Li ZL, Yao L, Kong LC, Liu H, Bioresour. Technol., 99(6), 1650 (2008)
- Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, HerrmannI I, Environ. Sci.Technol., 40, 5193 (2006)
- Liu H, Grot S, Logan BE, Environ. Sci. Technol., 39, 4317 (2005)
- Bond DR, Holmes DE, Tender LM, Lovley DR, Science., 295, 483 (2002)
- Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA, Environ. Sci. Technol., 42, 8630 (2008)
- Miyake J, Miyake M, Asada Y, J. Biotechnol., 70, 89 (1999)
- Hussy I, Hawkes FR, Dinsdale R, Hawkes DL, Biotechnol. Bioeng., 84(6), 619 (2003)
- Jeong TY, Cha GC, Yeom SH, Choi SS, J. Ind. Eng. Chem., 14(3), 333 (2008)
- Rashid N, Song W, Park J, Jin HF, Lee K, J. Ind. Eng. Chem., 15(4), 498 (2009)
- Clauwaert P, Verstraete W, Appl. Microbiol. Biotechnol., 82(5), 829 (2009)
- Hu H, Fan Y, Liu H, Int. J. Hydrogen Energy., 34, 8535 (2009)
- Liu H, Logan BE, Environ. Sci. Technol., 38, 4040 (2004)
- Kim JR, Premier GC, Hawkes FR, Dinsdale RM, Guwy AJ, J. Power Sources, 187(2), 393 (2009)
- Lee J, Phung NT, Chang IS, Kim BH, Sung HC, FEMS Microbiol. Lett., 223, 185 (2003)
- Call D, Logan BE, Environ. Sci. Technol., 42, 3401 (2008)
- Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K, Environ. Sci. Technol., 40, 5181 (2006)
- Rozendal RA, Hamelers HVM, Molenkamp RJ, Buisman CJN, Water Res., 41, 1984 (2007)
- Tartakovsky B, Manuel MF, Wang H, Guiot SR, Int. J. Hydrogen Energy., 34, 672 (2009)
- Zhang X, Cheng S, Huang X, Logan BE, Bioresour. Technol., 25, 1825 (2010)