Journal of Industrial and Engineering Chemistry, Vol.18, No.2, 785-791, March, 2012
A semi-empirical molecular clustering based lattice model near to and far from the critical region
E-mail:
A semi-empirical molecular clustering based lattice fluid model is presented to improve the classical lattice model for volumetric properties in the critical region. This model is based on the two assumptions:(1) the Helmholtz energy is individually divided into classical and long-range density fluctuation contribution; (2) all molecules form cluster near the critical region due to long-range density fluctuation. To formulate such molecular clustering, we extended the Veytsman statistics originally developed for the cluster due to hydrogen bonding. The probability function in the statistics is modified to represent the characteristics of long-range density fluctuation vanishing far from critical region. The proposed fluctuation contribution was incorporated into the Sanchez.Lacombe model and the combined model with 6 adjustable parameters has been tested against experimental VLE data for polar and non-polar components. The combined model is found to good agreements with experimental vapor pressure, saturated density and supercritical PVT data.
- Soave G, Chem. Eng. Sci., 27, 1197 (1972)
- Peng DY, DB, Ind. Eng. Chem. Fundam., 15, 59 (1976)
- Huang SH, Radosz M, Ind. Eng. Chem. Res., 29, 2284 (1990)
- Levelt-Sengers JMH, Fluid Phase Equilib., 158, 3 (1999)
- Gauter K, Heidemann RA, Ind. Eng. Chem. Res., 39(4), 1115 (2000)
- Jiang JW, Prausnitz JM, J. Chem. Phys., 111(13), 5964 (1999)
- Wilson KG, Phys. Rev. B., 4, 3174 (1971)
- Wilson KG, Phys. Rev. B., 4, 3184 (1971)
- Liming WS, John AW, J. Chem. Phys., 96, 4559 (1992)
- John AW, Sheng Z, J. Chem. Phys., 103, 1992 (1995)
- Kiselev SB, Fluid Phase Equilib., 147(1-2), 7 (1998)
- Landau LD, Lifshitz EM, Pitaevskii L.P, Statistical Physics, 3d rev. and enl. ed.,Pergamon Press, Oxford, New York (1980)
- Fornasiero F, Lue L, Bertucco A, AIChE J., 45(4), 906 (1999)
- Kiselev SB, Ely JF, Ind. Eng. Chem. Res., 38(12), 4993 (1999)
- Mi J, Zhong C, Li YG, Chen J, Chem. Phys., 305, 37 (2004)
- Shin MS, Lee Y, Kim H, J. Chem. Thermodyn., 40(2), 174 (2008)
- Lee Y, Shin MS, Ha B, Kim H, J. Chem. Thermodyn., 40(5), 741 (2008)
- Lee Y, Shin MS, Kim H, J. Chem. Thermodyn., 40(11), 1580 (2008)
- Lee Y, Shin MS, Kim H, J. Chem. Phys., 129, 203503 (2008)
- Shin MS, Korean J. Chem. Eng., 27(4), 1286 (2010)
- Mi JG, Tang YP, Zhong CL, Li YG, J. Phys. Chem. B, 109(43), 20546 (2005)
- Heidemann RA, Prausnitz JM, Proc. Natl. Acad. Sci. U.S.A., 73, 1773 (1976)
- Wertheim MS, J. Stat. Phys., 35, 19 (1984)
- Veytsman BA, J. Phys. Chem., 94, 8499 (1990)
- Pfund DM, Zemanian TS, Linehan JC, Fulton JL, Yonker CR, J. Phys. Chem., 98(46), 11846 (1994)
- Tucker SC, Maddox MW, J. Phys. Chem. B, 102(14), 2437 (1998)
- Tucker SC, Chem. Rev., 99(2), 391 (1999)
- Lee CS, Kang JW, Lee JH, Yoo KP, Fluid Phase Equilib., 265(1-2), 215 (2008)
- Sanchez IC, Lacombe RH, J. Phys. Chem., 80, 2352 (1976)
- Panayiotou C, Sanchez IC, J. Phys. Chem., 95, 10090 (1991)
- Deiters UK, De Reuck KM, Chem. Eng. J., 69(1), 69 (1998)
- Kedge CJ, Trebble MA, Fluid Phase Equilib., 217, 257 (2004)
- Lemmon EW, McLinden MO, Friend DG, NIST Chemistry Webbook, NIST Standard. Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg, MD, 2001 http://webbook.nist.gov.