화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.9, 1178-1186, September, 2012
Electrochemical degradation of phenol on the La and Ru doped Ti/SnO2-Sb electrodes
E-mail:
La and Ru doped Ti/SnO2-Sb electrodes were prepared by thermal decomposition and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It confirmed that the surface of the La and Ru doped Ti/SnO2-Sb electrodes presents a certain microspherical structure formed by aggregates of nanoparticles, which increases the specific area greatly and provides more active sites. The enhanced performance of the La and Ru doped electrodes arose from the increased adsorption capacity of hydroxyl radicals. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed an improvement of the electrochemical capacity for the La and Ru doped Ti/SnO2-Sb electrodes. The electrochemical oxidation performance of the prepared electrode was further studied using phenol as a model pollutant. UV scans revealed that both phenol and its intermediate products are more rapidly decomposed, especially in the early stage of oxidation on the La and Ru doped electrodes. The removals of chemical oxygen demand (COD) were 86.4% and 82.1% on the Ti/SnO2-Sb-La and Ti/SnO2-Sb-Ru electrodes, respectively, which were higher than that on the SnO2-Sb/Ti electrode (60.1%). The doped electrodes are demonstrated to have superior electrochemical oxidation ability for phenol.
  1. Maluleke MA, Linkov VM, Sep. Purif. Technol., 32(1-3), 377 (2003)
  2. Levi R, Milman M, Landau MV, Brenner A, Herskowitz M, Environ. Sci. Technol., 42, 5165 (2008)
  3. Hammami S, Oturan N, Bellakhal N, Dachraoui M, Oturan MA, J. Electroanal. Chem., 610(1), 75 (2007)
  4. An TC, Zhu XH, Xiong Y, Chemosphere., 46, 897 (2002)
  5. Lee Y, Kim Y, Jeong H, Yeo MK, Kang M, Bull. Korean Chem. Soc., 30, 107 (2009)
  6. Lam SM, Sin JC, Mohamed AR, Korean J. Chem. Eng., 27(4), 1109 (2010)
  7. Park JH, Seo YS, Kim HS, Kim IK, Korean J. Chem. Eng., 28(8), 1693 (2011)
  8. Szpyrkowicz L, Kaul SN, Neti RN, Satyanarayan S, Water Res., 39, 1601 (2005)
  9. Panizza M, Delucchi M, Cerisola G, J. Appl. Electrochem., 35(4), 357 (2005)
  10. Canizares P, Dominguez JA, Rodrigo MA, Villasenor J, Rodriguez J, Ind. Eng. Chem. Res., 38(10), 3779 (1999)
  11. Xiong Y, He C, Karlsson HT, Zhu XH, Chemosphere., 50, 131 (2003)
  12. Simond O, Comninellis C, Electrochim. Acta, 42(13-14), 2013 (1997)
  13. Ma HC, Liu CP, Liao JH, Su Y, Xue XZ, Xing W, J. Mol. Catal. A-Chem., 247(1-2), 7 (2006)
  14. Vukovic M, Marijan D, Cukman D, Pervan P, Milun M, J. Mater. Sci., 34(4), 869 (1999)
  15. Comninellis C, Vercesi GP, J. Appl. Electrochem., 21, 335 (1991)
  16. Duverneuil P, Maury F, Pebere N, Senocq F, Vergnes H, Surf.Coat. Technol., 151-152, 9 (2002)
  17. Zanta CLPS, Michaud PA, Comninellis C, De Andrade AR, Boodts JFC, J. Appl. Electrochem., 33(12), 1211 (2003)
  18. Costa CR, Botta CMR, Espindola ELG, Olivi P, J. Hazard. Mater., 153(1-2), 616 (2008)
  19. Hadjarab B, Bouguelia A, Benchettara A, Trari M, J. Alloy.Compd., 461, 360 (2008)
  20. Lipp L, Pletcher D, Electrochim. Acta, 42(7), 1091 (1997)
  21. Correalozano B, Comninellis C, Debattisti A, J. Appl. Electrochem., 26(7), 683 (1996)
  22. Houk LL, Johnson SK, Feng J, Houk RS, Johnson DC, J. Appl. Electrochem., 28, 1167n (1998)
  23. Wang YH, Chan KY, Li XY, So SK, Chemosphere., 65, 1087 (2006)
  24. Johnson SK, Houk LL, Feng JR, Houk RS, Johnson DC, Environ. Sci. Technol., 33, 2638 (1999)
  25. Makgae ME, Theron CC, Przybylowicz WJ, Crouch AM, Mater. Chem. Phys., 92(2-3), 559 (2005)
  26. Feng YJ, Cui YH, Bruce L, Liu ZQ, Chemosphere., 70, 1629 (2008)
  27. Ardizzone S, Bianchi CL, Cappelletti G, Ionita M, Minguzzi A, Rondinini S, Vertova A, J. Electroanal. Chem., 589(1), 160 (2006)
  28. Matyasovszky N, Tian M, Chen AC, J. Phys. Chem. A, 113(33), 9348 (2009)
  29. Makgae ME, Klink MJ, Crouch AM, Appl. Catal. B: Environ., 84(3-4), 659 (2008)
  30. Montilla F, Morallon E, De Battisti A, Barison S, Daolio S, Vazquez JL, J. Phys. Chem. B, 108(41), 15976 (2004)
  31. Weibel A, Bouchet R, Boulc’h F, Knauth P, Chem. Mater., 17, 2378 (2005)
  32. Brito GES, Pulcinelli SH, Santilli CV, J. Mater. Sci., 31(15), 4087 (1996)
  33. Correalozano B, Comninellis C, Debattisti A, J. Electrochem. Soc., 143(1), 203 (1996)
  34. Trost BM, Chan C, Ruhter G, J. Am. Chem. Soc., 109, 3486 (1987)
  35. Srinivas K, Vithal M, Sreedhar B, Raja MM, Reddy PV, J.Phys. Chem. C., 113, 3543 (2009)
  36. Yang SX, Feng YJ, Wan JF, Zhu WP, Jiang ZP, Appl. Surf. Sci., 246(1-3), 222 (2005)
  37. Fierro S, Nagel T, Baltruschat H, Comninellis C, Electrochem.Commun., 9, 1969 (2007)
  38. Mousty C, Foti G, Comninellis C, Reid V, Electrochim. Acta, 45(3), 451 (1999)
  39. Li J, Cassell A, Delzeit L, Han J, Meyyappan M, AAPG Bull., 106, 9299 (2002)
  40. Zanta CLPS, de Andrade AR, Boodts JFC, J. Appl. Electrochem., 30(4), 467 (2000)
  41. Cestarolli DT, De Andrade AR, Electrochim. Acta, 48(28), 4137 (2003)
  42. Yi QF, Huang W, Zhang JJ, Liu XP, Li L, J. Electroanal. Chem., 610(2), 163 (2007)
  43. Rasten E, Hagen G, Tunold R, Electrochim. Acta, 48(25-26), 3945 (2003)
  44. Karunakaran C, Gomathisankar P, Manikandan G, Korean J. Chem. Eng., 28(5), 1214 (2011)
  45. Ye ZG, Meng HM, Chen D, Yu HY, Huan ZS, Wang XD, Sun DB, Solid State Sci., 10, 346 (2008)
  46. Zhu XP, Shi SY, Wei JJ, Lv FX, Zhao HZ, Kong JT, He Q, Ni JN, Environ. Sci. Technol., 41, 6541 (2007)
  47. Chailapakul O, Popa E, Tai H, Tai BV, Tryk DK, Electrochem. Commun., 2, 422 (2000)
  48. Jung HJ, Hong JS, Suh JK, Korean J. Chem. Eng., 28(9), 1882 (2011)
  49. Fierro S, Nagel T, Baltruschat H, Comninellis C, Electrochem.Commun., 9, 1969 (2007)