Clean Technology, Vol.18, No.1, 51-56, March, 2012
Effect of Temperature and Reaction Time on the Synthesis of Butadiene Monoepoxide Using Iron Complex as an Efficient Catalyst
E-mail:
초록
상업적으로 이용 가능한 과산화초산을 산화제로 사용하고, 적은 양으로 매우 빠르게 산화시킬 수 있는 효율적인 철복합체[((phen)2(H2O)FeIII)2(μ-O)](ClO4)4 촉매를 사용하여 -10 ℃에서 1,3-부타다이엔을 에폭시화하였다. 에폭시화반응에 대한 온도(-10 ~ -40 ℃)와 시간의 효과에 관하여 연구하였다. 에폭시화반응은 -20 ℃에서 약 5분 내에 거의 완결될 정도로 빨랐으나, 그 이하의 온도에서는 느려졌다. 부타다이엔의 수율은 반응시간에 따라 증가하였으며, 부타다이엔 양이 증가하면 수율도 증가하는 경향을 보였다. 실험에서 얻은 부타다이엔모노에폭사이드의 최고 수율은 90%였다.
Here, we report an efficient iron complex [((phen)2(H2O)FeIII)2(μ-O)](ClO4)4, that can rapidly epoxidize 1,3-butadiene at -10 ℃ with low catalyst loadings by using commercially available peracetic acid as an oxidant. The main aspect of our study is to investigate the effect of temperature (from -10 to -40 ℃) and time on the epoxidation reaction. The epoxidation reaction was fast and almost completed within 5 min at temperatures above -20 ℃, whereas it became slow at temperatures below -20 ℃. The yield of butadiene monoepoxide (BMO)increased with increasing the reaction time. Generally, when the more butadiene was used, the higher yield was obtained. The highest yield of BMO was 90%.
- Xie HL, Fan YX, Zhou CH, Du ZX, Min EZ, Ge ZH, Li XN, Chem. Biochem. Eng. Q., 22(1), 25 (2008)
- Grigoropoulou G, Clark JH, Elings JA, Green Chem., 5(1), 1 (2003)
- Mizuno N, Yamaguchi K, Kamata K, Coord. Chem. Rev., 249(17-18), 1944 (2005)
- Tan W, Sha L, Zhao BX, Chin. J. Synth. Chem., 11(5), 384 (2004)
- Sheldon RA, Kochi JK, Metal-catalyzed Oxidations of Organic Compounds, Academic Press, New York (1981)
- Hill CL, In Advances in Oxygenated Processes, Baumstark AL Ed, JAI Press Inc., London, 1 (1988)
- Hudlicky M, Oxidations in organic chemistry, ACS Monograph Series, American Chemical Society, Washington, DC (1990)
- Thomas, E. W., Encyclopedia of Reagents for Organic Synthesis, USA (2001)
- Chen GY, Zhuang GV, Richardson TJ, Liu G, Ross PN, Electrochem. Solid State Lett., 8(7), A344 (2005)
- Jorgensen KA, Chem. Rev., 89(3), 431 (1989)
- Kamata K, Yonehara K, Sumida Y, Yamaguchi K, Hikichi S, Mizuno N, Sci., 300(5621), 964 (2003)
- Battioni P, Renaud JP, Bartoli JF, Reina-artiles M, Fort M, Mansuy D, J. Am. Chem.Soc., 110(25), 8462 (1988)
- Notari B, Adv.Catal., 41, 253 (1996)
- Romao CC, Kuhn FE, Herrmann WA, Chem. Rev., 97(8), 3197 (1997)
- Venturello C, Alneri E, Ricci M, J. Org. Chem., 48(21), 3831 (1983)
- Ishii Y, Yamawaki K, Ura T, Yamada H, Yoshida T, Ogawa M, J. Org. Chem., 53(15), 3587 (1988)
- Sato K, Aoki M, Ogawa M, Hashimoto T, Noyori R, Bull. Chem. Soc. Jpn., 70(4), 905 (1997)
- Neumann R, Gara M, J. Am. Chem. Soc., 117(18), 5066 (1995)
- Mizuno N, Nozaki C, Kiyoto I, Misono M, J. Am. Chem. Soc., 120(36), 9267 (1998)
- Dirk D, Vos De, Meinershagen JL, Bein T, Angew. Chem. Int. Ed., 35(19), 2211 (1996)
- Clerici MG, Bellussi G, Romano U, J. Catal., 129(1), 159 (1991)
- Swern D, Organic peroxides, John Wiley & Sons (1970)
- Palucki M, McCormick GJ, Jacobsen EN, Tetrahedron Lett., 36(31), 5457 (1995)
- Palucki M, Pospisil PJ, Zhang W, Jacobsen EN, J. Am. Chem. Soc., 116(20), 9333 (1994)
- Chang S, Lee NH, Jacobsen EN, J. Org. Chem., 58(25), 6939 (1993)
- Zhang W, Lee NH, Jacobsen EN, J. Am. Chem. Soc., 116(1), 425 (1994)
- Thomsen DS, Schiott B, Jorgensen KA, Chem. Commun., 15, 1072 (1992)
- Rasmussen KG, Thomsen DS, Jorgensen KA, J. Chem. Soc. Perkins Trans., 1, 2009 (1995)
- Murphy A, Dubois G, Stack TDP, J. Am. Chem. Soc., 125(18), 5250 (2003)
- White MC, Doyle AG, Jacobsen EN, J. Am. Chem. Soc., 123(29), 7194 (2001)
- Dubois G, Murphy A, Stack TDP, Org. Lett., 5(14), 2469 (2003)
- Yang SJ, Nam W, Inorg. Chem., 37(4), 606 (1998)
- Ostovic D, Bruice TC, Acc. Chem. Res., 25(7), 314 (1992)