화학공학소재연구정보센터
Clean Technology, Vol.18, No.1, 51-56, March, 2012
Effect of Temperature and Reaction Time on the Synthesis of Butadiene Monoepoxide Using Iron Complex as an Efficient Catalyst
E-mail:
초록
상업적으로 이용 가능한 과산화초산을 산화제로 사용하고, 적은 양으로 매우 빠르게 산화시킬 수 있는 효율적인 철복합체[((phen)2(H2O)FeIII)2(μ-O)](ClO4)4 촉매를 사용하여 -10 ℃에서 1,3-부타다이엔을 에폭시화하였다. 에폭시화반응에 대한 온도(-10 ~ -40 ℃)와 시간의 효과에 관하여 연구하였다. 에폭시화반응은 -20 ℃에서 약 5분 내에 거의 완결될 정도로 빨랐으나, 그 이하의 온도에서는 느려졌다. 부타다이엔의 수율은 반응시간에 따라 증가하였으며, 부타다이엔 양이 증가하면 수율도 증가하는 경향을 보였다. 실험에서 얻은 부타다이엔모노에폭사이드의 최고 수율은 90%였다.
Here, we report an efficient iron complex [((phen)2(H2O)FeIII)2(μ-O)](ClO4)4, that can rapidly epoxidize 1,3-butadiene at -10 ℃ with low catalyst loadings by using commercially available peracetic acid as an oxidant. The main aspect of our study is to investigate the effect of temperature (from -10 to -40 ℃) and time on the epoxidation reaction. The epoxidation reaction was fast and almost completed within 5 min at temperatures above -20 ℃, whereas it became slow at temperatures below -20 ℃. The yield of butadiene monoepoxide (BMO)increased with increasing the reaction time. Generally, when the more butadiene was used, the higher yield was obtained. The highest yield of BMO was 90%.
  1. Xie HL, Fan YX, Zhou CH, Du ZX, Min EZ, Ge ZH, Li XN, Chem. Biochem. Eng. Q., 22(1), 25 (2008)
  2. Grigoropoulou G, Clark JH, Elings JA, Green Chem., 5(1), 1 (2003)
  3. Mizuno N, Yamaguchi K, Kamata K, Coord. Chem. Rev., 249(17-18), 1944 (2005)
  4. Tan W, Sha L, Zhao BX, Chin. J. Synth. Chem., 11(5), 384 (2004)
  5. Sheldon RA, Kochi JK, Metal-catalyzed Oxidations of Organic Compounds, Academic Press, New York (1981)
  6. Hill CL, In Advances in Oxygenated Processes, Baumstark AL Ed, JAI Press Inc., London, 1 (1988)
  7. Hudlicky M, Oxidations in organic chemistry, ACS Monograph Series, American Chemical Society, Washington, DC (1990)
  8. Thomas, E. W., Encyclopedia of Reagents for Organic Synthesis, USA (2001)
  9. Chen GY, Zhuang GV, Richardson TJ, Liu G, Ross PN, Electrochem. Solid State Lett., 8(7), A344 (2005)
  10. Jorgensen KA, Chem. Rev., 89(3), 431 (1989)
  11. Kamata K, Yonehara K, Sumida Y, Yamaguchi K, Hikichi S, Mizuno N, Sci., 300(5621), 964 (2003)
  12. Battioni P, Renaud JP, Bartoli JF, Reina-artiles M, Fort M, Mansuy D, J. Am. Chem.Soc., 110(25), 8462 (1988)
  13. Notari B, Adv.Catal., 41, 253 (1996)
  14. Romao CC, Kuhn FE, Herrmann WA, Chem. Rev., 97(8), 3197 (1997)
  15. Venturello C, Alneri E, Ricci M, J. Org. Chem., 48(21), 3831 (1983)
  16. Ishii Y, Yamawaki K, Ura T, Yamada H, Yoshida T, Ogawa M, J. Org. Chem., 53(15), 3587 (1988)
  17. Sato K, Aoki M, Ogawa M, Hashimoto T, Noyori R, Bull. Chem. Soc. Jpn., 70(4), 905 (1997)
  18. Neumann R, Gara M, J. Am. Chem. Soc., 117(18), 5066 (1995)
  19. Mizuno N, Nozaki C, Kiyoto I, Misono M, J. Am. Chem. Soc., 120(36), 9267 (1998)
  20. Dirk D, Vos De, Meinershagen JL, Bein T, Angew. Chem. Int. Ed., 35(19), 2211 (1996)
  21. Clerici MG, Bellussi G, Romano U, J. Catal., 129(1), 159 (1991)
  22. Swern D, Organic peroxides, John Wiley & Sons (1970)
  23. Palucki M, McCormick GJ, Jacobsen EN, Tetrahedron Lett., 36(31), 5457 (1995)
  24. Palucki M, Pospisil PJ, Zhang W, Jacobsen EN, J. Am. Chem. Soc., 116(20), 9333 (1994)
  25. Chang S, Lee NH, Jacobsen EN, J. Org. Chem., 58(25), 6939 (1993)
  26. Zhang W, Lee NH, Jacobsen EN, J. Am. Chem. Soc., 116(1), 425 (1994)
  27. Thomsen DS, Schiott B, Jorgensen KA, Chem. Commun., 15, 1072 (1992)
  28. Rasmussen KG, Thomsen DS, Jorgensen KA, J. Chem. Soc. Perkins Trans., 1, 2009 (1995)
  29. Murphy A, Dubois G, Stack TDP, J. Am. Chem. Soc., 125(18), 5250 (2003)
  30. White MC, Doyle AG, Jacobsen EN, J. Am. Chem. Soc., 123(29), 7194 (2001)
  31. Dubois G, Murphy A, Stack TDP, Org. Lett., 5(14), 2469 (2003)
  32. Yang SJ, Nam W, Inorg. Chem., 37(4), 606 (1998)
  33. Ostovic D, Bruice TC, Acc. Chem. Res., 25(7), 314 (1992)