화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.23, No.2, 210-216, April, 2012
급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(I) (잔골재를 급냉 제강슬래그로 대체 사용)
Physical Properties of Polymer Concrete Composite Using Rapid-Cooled Steel Slag (I) (Use of Rapid-Cooled Steel Slag in Replacement of Fine Aggregate)
E-mail:
초록
급냉 제강슬래그를 재활용하기 위하여 급냉 제강슬래그의 대체율과 폴리머 결합재의 첨가율을 다양하게 변화시켜 공시체를 제작하였다. 공시체의 제 물성을 조사하기 위하여 흡수시험, 압축 및 휨강도, 내열수성시험, 세공분포측정 및 SEM에 의한 미세조직 관찰을 실시하였다. 그 결과 폴리머 결합재 및 급냉 제강슬래그의 대체율 증가에 따라 휨강도는 현저히 증가되었으나 압축강도는 특정한 배합조건에서 최대강도를 나타내었다. 내열수성시험에 의하여 압축 및 휨강도는 현저히 감소되었고, 총세공량은 증가되었으나 세공직경은 감소되었다. 전자현미경 관찰에서 내열수시험 전의 조직은 견고하게 융착되어 있었으나 내열수시험 후의 조직에서는 폴리머 결합재가 분해 또는 열화되어 있는 것을 관찰할 수 있었다.
For the recycling of rapid-cooled steel slag, various specimens were prepared with the various replacement ratios of the rapid-cooled steel slag and the addition ratios of polymer binders. The physical properties of these specimens were then investigated by absorption test, compressive strength test, flexural strength test and hot water resistance test, and the pore and the micro-structure analysis was performed using scanning electron microscope. Results showed that the flexural strength increased with the increase of rapid-cooled steel slag and polymer binder, but the compressive strength showed a maximum strength at a certain proportion. By the hot water resistance test, compressive strength and flexural strength decreased remarkably and the total pore volume increased but the pore diameter decreased. SEM observation of the structure before the hot water resistance test revealed a very compact infusion of structure but the decomposition or thermal degradation appeared in polymer binders when observed after the hot water resistance test.
  1. Hwang EH, Hwang TS, J. Ind. Eng. Chem., 13(4), 585 (2007)
  2. Kim JM, Cho SH, Kwon KJ, Kim MH, J. of Archi.Instit. of Korea., 21, 121 (2005)
  3. Hwang EH, Ko YS, Kim JM, Hwang TS, J. Ind. Eng. Chem., 15(5), 628 (2009)
  4. Moon HY, Yoo JH, J. of the Korea Conc. Instit., 14, 597 (2002)
  5. Kim JM, Kwak EG, Bae KS, J. of the Korea Conc.Instit., 19, 549 (2007)
  6. Montgomery DG, Wang G, Cem. Conc. Res., 21, 1083 (1991)
  7. Montgomery DG, Wang G, Cem. Conc. Res., 22, 755 (1992)
  8. Kim JM, Cho SH, Oh SY, Kwak EG, Mag. of the Korea Conc. Instit., 19, 39 (2007)
  9. Oh OS, et al., Patent No. 10-0098062-0000 (1996)
  10. Fowler DW, Cem. Conc. Res., 21, 449 (1999)
  11. Czarnecki L, Garbacz A, Kurach J, Cem. Conc. Compos., 23, 399 (2001)
  12. Gorninski JP, Dal Molin DC, Kazmierczak CS, Cem. Conc. Res., 34, 2091 (2004)
  13. Haidar M, Ghorbel E, Toutanji H, Const. Build. Mater., 25, 1632 (2011)
  14. Abdel-Fattah H, El-Hawary MM, Const. Build. Mater., 13, 253 (1999)
  15. Gorninski JP, Dal Molin DC, Kazmierczak CS, Cem.Conc. Compos., 29, 637 (2007)
  16. Ohama Y, Proc. 12th Inter. Cong. on polym. in Conc., ed. Kyu-Seok Yeon, Chuncheon, 12, 37 (2007)
  17. Van Gemert D, Czarnecki L, et al, Cem. Conc. Compos., 27, 926 (2005)
  18. San-Jose JT, Vegas IJ, Frıas M, Const. Build. Mater., 22, 2031 (2008)
  19. Jo BW, Park SK, Kim DK, Const. Build. Mater., 22, 14 (2008)
  20. Gorninski JP, Dal Molin DC, Kazmierczak CS, Const.Build. Mater., 21, 546 (2007)
  21. Soraru GD, Tassone P, Const. Build. Mater., 18, 561 (2004)