Experimental Heat Transfer, Vol.24, No.3, 234-256, 2011
EXPERIMENTS TO EXPLORE THE MECHANISMS OF HEAT TRANSFER IN NANOCRYSTALLINE ALUMINA/WATER NANOFLUID UNDER LAMINAR AND TURBULENT FLOW CONDITIONS
Heat transfer characteristic of water-based nanocrystalline alumina (Al2O3) nanofluids flowing through a uniformly heated tube under a fully developed laminar and turbulent flow regime is investigated experimentally in the present work to explore the heat transfer mechanism in nanofluids. In a laminar flow, the increase in Nusselt number was attributed to the thermophysical properties of the nanofluid. The movement of nanoparticles, along with the turbulent eddies in the turbulent core region and diffusion mechanism, such as thermophoresis, in the laminar sublayer are believed to be the reasons for enhanced heat transfer in turbulent region. The compatibility of Al2O3/water nanofluids was also examined by monitoring its color.