화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.57, No.2, 478-483, 2012
Global State Synchronization in Networks of Cyclic Feedback Systems
This technical note studies global asymptotic state synchronization in networks of identical systems. Conditions on the coupling strength required for the synchronization of nodes having a cyclic feedback structure are deduced using incremental dissipativity theory. The method takes advantage of the incremental passivity properties of the constituent subsystems of the network nodes to reformulate the synchronization problem as one of achieving incremental passivity by coupling. The method can be used in the framework of contraction theory to constructively build a contracting metric for the incremental system. The result is illustrated for a network of biochemical oscillators.