Inorganic Chemistry, Vol.49, No.5, 2083-2092, 2010
Formation of a Cobalt(III)-Phenoxyl Radical Complex by Acetic Acid Promoted Aerobic Oxidation of a Co(II)salen Complex
The activation of NA(-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diamino Co-II, [Co-II(1)], by the addition of acetic acid under aerobic conditions has been investigated by a range of spectroscopic techniques including continuous-wave EPR, HYSCORE, pulsed ENDOR, and resonance Raman. These measurements have revealed for the first time the formation of a coordinated cobalt(III)-bound phenoxyl radical labeled [Co-III(1(center dot))(OAc)(n)](OAc)(m) (n = m = 1 or n = 2, m = 0). This cobalt(III)-bound phenoxyl radical is characterized by the following spin Hamiltonian parameters: g(x) = 2.0060, g(y) = 2.0031, g(z) = 1.9943, A(x) = 17 MHz, A(y) = 55 MHz, and A(z) = 14 MHz. Although the radical contains coordinated acetate(s), the experiments unambiguously proved that the phenoxyl radical is situated on ligand (1) as opposed to a phenoxyl radical ligated to cobalt in the axial position. Density functional theory computations on different models corroborate the stability of such a phenoxyl radical species and suggest the ligation of one or two acetate molecules to the complex. A mechanism is proposed, which accounts for the formation of this unusual and extremely robust phenoxyl radical, never previously observed for [Co(1)].