Inorganic Chemistry, Vol.50, No.22, 11623-11630, 2011
Advances in the Chemistry of Nanosized Zirconium Phosphates: A New Mild and Quick Route to the Synthesis of Nanocrystals
Simple addition of zirconyl propionate to phosphoric acid in alcoholic media surprisingly led to the formation, in few minutes, of transparent gels containing solvent intercalated zirconium phosphate (ZrP) nanoparticles with hexagonal shape and a planar size of about 40 nm. With the help of elemental analysis, inductively coupled plasma-optical emission spectrometry (ICP-OES), and P-31 magic angle spinning (MAS) NMR, the nanoparticle composition was formulated as Zr(R)(w)-(HPO4)(x)(H2PO4)(y), in which R can be an hydroxyl or a propionate group. The stoichiometric coefficients for propanol intercalated ZrP are x = 1.43, y = 0.83, and w = 0.32. Solvent elimination at 60 degrees C gave rise to an increase in the x value and a decrease in the y and w values. X-ray powder diffraction analysis and transmission electron microscopy (TEM) observations showed a concomitant increase in the particle size: planar size and thickness ranged from 90 to 200 nm and from 20 to 85 nm, respectively, depending on the nature of the solvent. A possible mechanism explaining the change in the x, y, and w values, the growth of nanoparticles, and the role of the solvent is proposed. Finally, the possibility of using these gels to disperse the ZrP nanoparticles within the polymer matrix of Nafion117 is shown.