Inorganic Chemistry, Vol.51, No.1, 647-660, 2012
Structural and Photophysical Properties of Visible- and Near-IR-Emitting Tris Lanthanide(III) Complexes Formed with the Enantiomers of N,N'-Bis(1-phenylethyl)-2,6-pyridinedicarboxamide
The enantiomers of N,N'-bis(1-phenylethyl)-2,6-pyridinedicarboxamide (L), namely, (R,R)-1, and (S,S)-1, react with Ln(III) ions to give stable [LnL(3)](3+) complexes in an anhydrous acetonitrile solution and in the solid state, as evidenced by electrospray ionization mass spectrometry, NMR, luminescence titrations, and their X-ray crystal structures, respectively. All [LnL(3)](3+) complexes [Ln(III) = Eu, Gd, Tb, and Yb; L = (R,R)-1 and (S,S)-1] are isostructural and crystallize in the cubic space group I23. Although the small quantum yields of the Ln(III)-centered luminescence clearly point to the poor efficiency of the luminescence sensitization by the ligand and the intersystem crossing and ligand-to-metal energy transfers, the ligand triplet-excited-state energy seems relatively well suited to sensitize many Ln(III) ion's emission for instance, in the visible (Eu and Tb), near-IR (Nd and Yb), or both regions (Pr, Sm, Dy, Er, and Tm).