- Previous Article
- Next Article
- Table of Contents
International Journal of Energy Research, Vol.35, No.3, 259-270, 2011
Performance analysis of a tubular solid oxide fuel cell with an indirect internal reformer
A 2-D steady-state mathematical model of a tubular solid oxide fuel cell with indirect internal reforming (IIR-SOFC) has been developed to examine the chemical and electrochemical processes and the effect of different operating parameters on the cell performance. The conservation equations for energy, mass, momentum as well as the electrochemical equations are solved simultaneously employing numerical techniques. A co-flow configuration is considered for gas streams in the air and fuel channels. The heat radiation between the preheater and reformer surface is incorporated into the model and local heat transfer coefficients are determined throughout the channels. The model predictions have been compared with the data available in the literature. The model was used to study the effect of various operating conditions on the cell performance. Numerical results indicate that as the cell operating pressure increases, the reforming reaction extends to a larger portion of the cell and the maximum temperature move away from the cell inlet. As a result, a more uniform temperature prevails in the solid structure which reduces thermal stresses. Also, at higher excess air, the rate of heat transfer to the air stream is augmented and the average cell temperature is decreased. Copyright (C) 2010 John Wiley & Sons, Ltd.
Keywords:solid oxide fuel cell;SOFC;steam reformer;indirect internal reforming;power generation;mathematical modeling