International Journal of Heat and Mass Transfer, Vol.55, No.5-6, 1764-1772, 2012
Heat transfer by shock-wave/boundary layer interaction on a flat surface with a mounted cylinder
The detailed convective heat transfer is observed on a flat surface where the cylinder is mounted in a supersonic flow field. During the test, the thermal image of a wall temperature distribution is taken by an infra-red camera under the constant heat flux condition on the flat surface. From the measured wall temperature information, heat transfer coefficients are calculated. The shadow graph and the oil flow tests are conducted to examine the shock-wave structure and the surface shear flow around the protruding body, respectively. The entire flow also is simulated numerically. The upstream flow Mach number, total pressure and Reynolds number are about 3, 600 kPa and 2.3 x 10(6), respectively. The swept-back effect of a cylinder to the approaching flow is considered in the range from 0 degrees to 30 degrees. From the results, the large increase of heat transfer is observed in a shock-wave/turbulent boundary layer interaction region and the peak heating appeared especially on a flow reattachment region. When the cylinder is swept backward to the main flow, the heat flux promotion decreases as much as its effective area. These results will provide the valuable information for the thermal analysis in a complicated shock-induced separation region. (C) 2011 Elsevier Ltd. All rights reserved.
Keywords:Convective heat transfer coefficient;Shock-wave/boundary layer interaction;Cylinder;IR thermography