화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.12, 1713-1721, December, 2012
Rheology and fuel properties of slurries of char and bio-oil derived from slow pyrolysis of cassava pulp residue and palm shell
E-mail:
Three bio-oil samples, namely, raw bio-oil from pyrolysis of cassava pulp residue (CPR), separated oil phase and aqueous phase of bio-oil from pyrolysis of palm shell (PS), were used as suspending media for preparing slurries of bio-oil and the co-product char. Rheologies of all tested slurries exhibited pseudoplasticity with yield stress and the degree of this non-Newtonian behavior depended on such parameters as slurry type, solid concentration, particle size and slurry temperature. Overall, char/bio-oil slurries gave better fuel properties including higher pH and reasonably high calorific value (18-32 MJ/kg) as compared to their bio-oil properties. Combustion of char/bio-oil slurries occurred in the temperature range similar to their solid char combustion and without ignition delay.
  1. Dynamotive Energy Systems Cooperation 2009. Technology [Online]. Avaliable: http://www.dynamotive.com.
  2. McKendry P, Bioresour. Technol., 83(1), 55 (2002)
  3. Liu Q, Wang S, Wang K, Luo Z, Cen K, Korean J. Chem. Eng., 26(2), 548 (2009)
  4. Choi HS, Choi YS, Park HC, Korean J. Chem. Eng., 27(4), 1164 (2010)
  5. Park HJ, Heo HS, Yim JH, Jeon JK, Ko YS, Kim SS, Park YK, Korean J. Chem. Eng., 27(1), 73 (2010)
  6. Bridgwater AV, Chem. Eng. J., 91(2-3), 87 (2003)
  7. Oasmaa A, Czernik S, Energy Fuels., 13, 914 (1994)
  8. Weerachanchai P, Tangsathitkulchai C, Tangsathitkulchai M, Korean J. Chem. Eng., 28(12), 2262 (2011)
  9. He RH, Ye P, English BC, Satrio JA, Bioresour. Technol., 100(21), 5305 (2009)
  10. Zheng JL, Yi WM, Wang NN, Energy Conv. Manag., 49(6), 1724 (2008)
  11. Schramm G, A practical approach to rheology and rheometry, Gebrueder HAAKE Gmbh, Karlsruhe, Germany (1994)
  12. Lachemet A, Touil D, Belaadi S, Bentaieb N, J. Appl. Sci., 8, 3485 (2008)
  13. Logos C, Nguyen QD, Powder Technol., 88(1), 55 (1996)
  14. Gu TY, Wu GG, Li QH, Sun ZQ, Zeng F, Wang GY, Meng XL, J. China Univ. Min. Technol., 18, 50 (2008)
  15. Cheng J, Zhou JH, Li YC, Liu JZ, Cen KF, Fuel, 87(12), 2620 (2008)
  16. He MZ, Wang YM, Forssberg E, Powder Technol., 147(1-3), 94 (2004)
  17. Shi FN, Napier-Munn TJ, Int. J. Miner. Process., 65(3-4), 125 (2002)
  18. Guo DH, Li XC, Yuan JS, Jiang L, Fuel, 77(3), 209 (1998)
  19. Cui L, An L, Hang H, Fuel, 87(10-11), 2296 (2008)
  20. Majumder SK, Chandna K, De DS, Kundu G, Int. J. Miner. Process., 79(4), 217 (2006)
  21. Tangsathitkulchai C, Austin LG, Powder Technol., 56, 293 (1988)
  22. Shin YJ, Shen YH, Chemosphere., 68, 389 (2007)
  23. Lapcik L, Lapcikova B, Filgasova G, Colloid. Polym. Sci., 278, 65 (2000)
  24. Mosa ES, Saleh AM, Taha TA, El-Molla AM, Physicochem. Probl. Mi., 42, 107 (2008)
  25. Olhero SM, Ferreira JMF, Powder Technol., 139(1), 69 (2004)
  26. Aktas Z, Woodburn ET, Fuel Process. Technol., 62(1), 1 (2000)
  27. He MZ, Wang YM, Forssberg E, Int. J. Miner. Process., 78(2), 63 (2006)