Korean Journal of Chemical Engineering, Vol.29, No.10, 1329-1335, October, 2012
Carbon dioxide reforming of methane to synthesis gas over LaNi1-xCrxO3 perovskite catalysts
E-mail:,
Carbon dioxide reforming of methane was investigated over LaNi1-xCrxO3 perovskite catalysts which were prepared by the malic acid method. The respective perovskite catalysts were a single phase of perovskite oxide without impurity phases. Their reduction behavior was characterized by temperature programmed reduction. In the LaNi1-xCrxO3 perovskite catalysts, the catalytic activities were closely related to the reduction behavior of the catalysts, and the partial substitution of Cr to the B-site of perovskite catalysts promoted stability against reduction. When the x values were lower than 0.4, the LaNi1-xCrxO3 perovskite catalysts were decomposed to La2O3 and Ni and the decomposition of perovskite structure led to large coke deposition. When the x values were higher than 0.4, the LaNi1-xCrxO3 perovskite catalysts showed reduced catalytic activity but became stable to reduction and coke formation in the reforming reaction.
- Hu YH, Ruckenstein E, Adv. Catal., 48, 297 (2004)
- Fan MS, Abdullah AZ, Bhatia S, ChemCatChem., 1, 192 (2009)
- Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF, Nature., 452, 225 (1991)
- Fox JM, Catal. Rev. Sci. Eng., 35, 169 (1993)
- Rostrup-Nielsen JR, Hansen JHB, J. Catal., 144, 38 (1993)
- Zhang Z, Verykios XE, J. Chem. Soc., Chem. Commun., 71 (1995)
- Hu YH, Ruckenstein E, J. Catal., 163(2), 306 (1996)
- Bhat RN, Sachtler WM, Appl. Catal. A: Gen., 150(2), 279 (1997)
- Wang HY, Au CT, Appl. Catal. A: Gen., 155(2), 239 (1997)
- Stagg SM, Romeo E, Padro C, Resasco DE, J. Catal., 178(1), 137 (1998)
- Bradford MCJ, Vannice MA, J. Catal., 183(1), 69 (1999)
- Bradford MCJ, Vannice MA, Catal. Rev.-Sci. Eng., 41(1), 1 (1999)
- de Araujo GC, de Lima SM, Assaf JM, Pena MA, Fierro JLG, Rangel MC, Catal. Today., 133-135, 129 (2008)
- Chen YG, Ren J, Catal. Lett., 29(1-2), 39 (1994)
- Choudhary VR, Uphade BS, Mamman AS, Catal. Lett., 32(3-4), 387 (1995)
- Choudhary VR, Uphade BS, Belhekar AA, J. Catal., 163(2), 312 (1996)
- Zhang ZL, Verykios XE, Macdonald SM, Affrossman S, J. Phys. Chem., 100(2), 744 (1996)
- Zhang ZL, Verykios XE, Appl. Catal. A: Gen., 138(1), 109 (1996)
- Cheng ZX, Wu QL, Li JL, Zhu QM, Catal. Today, 30(1-3), 147 (1996)
- Choudhary VR, Rajput AM, Ind. Eng. Chem. Res., 35(11), 3934 (1996)
- Kim H, Lee SJ, Song KS, Korean J. Chem. Eng., 24(3), 477 (2007)
- Solymosi F, Kutsan G, Erdohelyi A, Catal. Lett., 11, 149 (1991)
- Erdohelyi A, Cserenyi E, Solymosi F, J. Catal., 141, 287 (1993)
- Qin D, Lapszewicz J, Catal. Today., 21, 551 (1994)
- Mark MF, Maier WF, J. Catal., 164(1), 122 (1996)
- Nagaoka K, Takanabe K, Aika K, Appl. Catal. A: Gen., 268(1-2), 151 (2004)
- Hou ZY, Chen P, Fang HL, Zheng XM, Yashima T, Int.J. Hydrog. Energy., 31, 555 (2006)
- Sauvet A, Guindet J, Fouletier J, IONICS., 5, 150 (1999)
- Rivas ME, Fierro JLG, Goldwasser MR, Pietri E, Perez-Zurita MJ, Griboval-Constant A, Leclercq G, Appl. Catal. A: Gen., 344(1-2), 10 (2008)
- Stojanovic M, Haverkamp RG, Mims CA, Moudallal H, Jacobson AJ, J. Catal., 166(2), 315 (1997)
- Wu Y, Kawaguchi O, Matsuda T, Bull. Chem. Soc. Jpn., 71, 563 (1998)
- Valderrama G, Kiennemann A, Goldwasser MR, Catal. Today., 133-135, 142 (2008)
- Nakamura T, Petzow G, Gauckler LJ, Mater. Res. Bull., 14, 649 (1979)
- Erning JW, Hauber T, Stimming U, Wippermann K, J. Power Sources., 61, 205 (1996)
- Fierro JLG, Tejuca LG, Appl. Surf. Sci., 27, 453 (1987)
- Tejuca LG, Fierro JLG, Thermochim. Acta., 147, 361 (1989)
- Provendier H, Petit C, Estournes C, Libs S, Kiennemann A, Appl. Catal. A: Gen., 180(1-2), 163 (1999)
- Trimm DL, Catal. Rev. Sci. Eng., 16, 155 (1977)