화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.10, 1329-1335, October, 2012
Carbon dioxide reforming of methane to synthesis gas over LaNi1-xCrxO3 perovskite catalysts
E-mail:,
Carbon dioxide reforming of methane was investigated over LaNi1-xCrxO3 perovskite catalysts which were prepared by the malic acid method. The respective perovskite catalysts were a single phase of perovskite oxide without impurity phases. Their reduction behavior was characterized by temperature programmed reduction. In the LaNi1-xCrxO3 perovskite catalysts, the catalytic activities were closely related to the reduction behavior of the catalysts, and the partial substitution of Cr to the B-site of perovskite catalysts promoted stability against reduction. When the x values were lower than 0.4, the LaNi1-xCrxO3 perovskite catalysts were decomposed to La2O3 and Ni and the decomposition of perovskite structure led to large coke deposition. When the x values were higher than 0.4, the LaNi1-xCrxO3 perovskite catalysts showed reduced catalytic activity but became stable to reduction and coke formation in the reforming reaction.
  1. Hu YH, Ruckenstein E, Adv. Catal., 48, 297 (2004)
  2. Fan MS, Abdullah AZ, Bhatia S, ChemCatChem., 1, 192 (2009)
  3. Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF, Nature., 452, 225 (1991)
  4. Fox JM, Catal. Rev. Sci. Eng., 35, 169 (1993)
  5. Rostrup-Nielsen JR, Hansen JHB, J. Catal., 144, 38 (1993)
  6. Zhang Z, Verykios XE, J. Chem. Soc., Chem. Commun., 71 (1995)
  7. Hu YH, Ruckenstein E, J. Catal., 163(2), 306 (1996)
  8. Bhat RN, Sachtler WM, Appl. Catal. A: Gen., 150(2), 279 (1997)
  9. Wang HY, Au CT, Appl. Catal. A: Gen., 155(2), 239 (1997)
  10. Stagg SM, Romeo E, Padro C, Resasco DE, J. Catal., 178(1), 137 (1998)
  11. Bradford MCJ, Vannice MA, J. Catal., 183(1), 69 (1999)
  12. Bradford MCJ, Vannice MA, Catal. Rev.-Sci. Eng., 41(1), 1 (1999)
  13. de Araujo GC, de Lima SM, Assaf JM, Pena MA, Fierro JLG, Rangel MC, Catal. Today., 133-135, 129 (2008)
  14. Chen YG, Ren J, Catal. Lett., 29(1-2), 39 (1994)
  15. Choudhary VR, Uphade BS, Mamman AS, Catal. Lett., 32(3-4), 387 (1995)
  16. Choudhary VR, Uphade BS, Belhekar AA, J. Catal., 163(2), 312 (1996)
  17. Zhang ZL, Verykios XE, Macdonald SM, Affrossman S, J. Phys. Chem., 100(2), 744 (1996)
  18. Zhang ZL, Verykios XE, Appl. Catal. A: Gen., 138(1), 109 (1996)
  19. Cheng ZX, Wu QL, Li JL, Zhu QM, Catal. Today, 30(1-3), 147 (1996)
  20. Choudhary VR, Rajput AM, Ind. Eng. Chem. Res., 35(11), 3934 (1996)
  21. Kim H, Lee SJ, Song KS, Korean J. Chem. Eng., 24(3), 477 (2007)
  22. Solymosi F, Kutsan G, Erdohelyi A, Catal. Lett., 11, 149 (1991)
  23. Erdohelyi A, Cserenyi E, Solymosi F, J. Catal., 141, 287 (1993)
  24. Qin D, Lapszewicz J, Catal. Today., 21, 551 (1994)
  25. Mark MF, Maier WF, J. Catal., 164(1), 122 (1996)
  26. Nagaoka K, Takanabe K, Aika K, Appl. Catal. A: Gen., 268(1-2), 151 (2004)
  27. Hou ZY, Chen P, Fang HL, Zheng XM, Yashima T, Int.J. Hydrog. Energy., 31, 555 (2006)
  28. Sauvet A, Guindet J, Fouletier J, IONICS., 5, 150 (1999)
  29. Rivas ME, Fierro JLG, Goldwasser MR, Pietri E, Perez-Zurita MJ, Griboval-Constant A, Leclercq G, Appl. Catal. A: Gen., 344(1-2), 10 (2008)
  30. Stojanovic M, Haverkamp RG, Mims CA, Moudallal H, Jacobson AJ, J. Catal., 166(2), 315 (1997)
  31. Wu Y, Kawaguchi O, Matsuda T, Bull. Chem. Soc. Jpn., 71, 563 (1998)
  32. Valderrama G, Kiennemann A, Goldwasser MR, Catal. Today., 133-135, 142 (2008)
  33. Nakamura T, Petzow G, Gauckler LJ, Mater. Res. Bull., 14, 649 (1979)
  34. Erning JW, Hauber T, Stimming U, Wippermann K, J. Power Sources., 61, 205 (1996)
  35. Fierro JLG, Tejuca LG, Appl. Surf. Sci., 27, 453 (1987)
  36. Tejuca LG, Fierro JLG, Thermochim. Acta., 147, 361 (1989)
  37. Provendier H, Petit C, Estournes C, Libs S, Kiennemann A, Appl. Catal. A: Gen., 180(1-2), 163 (1999)
  38. Trimm DL, Catal. Rev. Sci. Eng., 16, 155 (1977)