Applied Chemistry for Engineering, Vol.23, No.3, 279-283, June, 2012
산 및 효소 가수분해를 이용한 홍조류로부터 바이오 에탄올 생산
Production of Bio-ethanol from Red Algae by Acid Hydrolysis and Enzyme Treatment
E-mail:
초록
화석연료로 인한 환경오염 등의 문제를 해결하기 위해서 다양한 원료를 이용하여 바이오 에탄올 생산에 대한 연구가 진행되고 있다. 해조류 중에 홍조류는 agar, carrageenan, porphyran으로 구성되어 있어 산 처리를 통해 바이오에탄올 생산에 유용한 바이오매스로 전환이 가능하다. 본 연구는 홍조류의 가수분해물을 이용하여 바이오에탄올 생산의 최적조건을 찾으려고 한다. 바이오에탄올 생산하기 위해 전처리 된 우뭇가사리에 Saccharomyces cerevisiae KCCM112를 접종해 발효하였다. 우뭇가사리 가수분해의 최적조건은 1.5% H2SO4를 121 ℃에서 30 min 반응시켰을 때 7.04 g/L의 galactose와 1.94 g/L의 glucose가 생산되었다. 그리고 CH3COOH의 경우 2.0% 농도로 처리하였을 때, galactose 0.75 g/L가
생산되었다. 이와 반대로 도박에서는 H2SO4 1.5%를 처리하였을 때 galactose를 6.38 g/L 생산하였으며, CH3COOH을 처리했을 때 0.368 g/L이 생산되었다. 우뭇가사리에서 에탄올 생산은 1.0% H2SO4를 121 ℃에서 30 min 간 처리하였을 때 가장 높았으며, 96 h 배양하였을 때 3.77 g/L의 에탄올을 생산했다.
Bio-ethanol production research using various material has been problemed for solving problems of environment pollution caused by fossil fuels. Red-algae consists of agar, carrageenan, and porphyran. If it is treated by acid, it is able to change useful bio-mass for bio-ethanol. In this study, we found an optimal condition for bio.ethanol production from acid hydrolysate in red-algae. To produce bio-ethanol, Saccharomyces cerevisiae KCCM1129 inoculated to acid hydrolysate of Gelidium amansii. The optimal condition for Gelidium amansii hydrolysis was found to be 30 min reaction at H2SO4 concentration of 1.5% and 121 ℃. At this condition, its produced to 7.04 g/L galactose and 1.94 g/L glucose. And acetic acid concentration of 2.0% in agar produced 0.75 g/L galactose. In contrast, Pachymeniopis elliptica was treated with H2SO4 concentration of 1.5%, it produced 6.38 g/L galactose. And Pachymeniopis elliptica treated with acetic acid concentration of 2% produced 0.368 g/L galactose. The optimal condition of ethanol production was found to be 96 h reaction at H2SO4 concentration of 1.0% and 30 ℃, which produced 3.77 g/L ethanol.
- Kim, Lee ES, Kim W, Suh DJ, Ahn BS, Clean Technol., 17(2), 156 (2011)
- Lee JW, Kim HY, Jeffries TW, Choi IG, Mokchae Konghak., 38, 561 (2010)
- Kim DS, Kim HR, Kim JH, Pyeun JH, J. Kor. Fish.Soc., 33, 70 (2000)
- Do JR, Nam YJ, Park JH, Jo JH, J. Kor. Fish. Soc., 30, 428 (1997)
- Song EJ, Kim AR, Kim MJ, Lee SY, Kim KBWR, Park JG, Lee JW, Byun MW, Ahn DH, Food Eng.Progr., 12, 58 (2008)
- Kim SM, Park SM, Choi HM, Lee KT, J. Kor. Fish.Soc., 32, 495 (1999)
- Kim JH, Yoon MH, J. Appl. Biol. Chem., 54, 41 (2011)
- Park JH, Koo JG, J. Kor. Fish. Soc., 41, 409 (2008)
- Lee SM, Lee JH, Appl. Chem. Eng., 21(2), 154 (2010)
- Horn SJ, Aasen IM, Østgaard K, J. Ind. Microbiol.Biotechnol., 25, 249 (2000)
- Lee JC, Kim JH, Park HS, Park DW, J. of KSEE., 609 (2010)
- Lee SM, Yu BJ, Kim YM, Choi SJ, Ha JM, Lee JH, J. Korean Ind. Eng. Chem., 20(3), 290 (2009)
- Choi GW, Han MH, Kim Y, Korean J. Biotechnol.Bioeng., 23, 276 (2008)
- Jung H, Choi YS, Yang DR, Joo OS, Jung KD, Clean Technol., 14(2), 129 (2008)
- Lee MG, Cho DH, Kim YH, Lee JW, Lee JH, Kim SW, Cho JH, Lee DH, Kim SY, Park CH, KSBB J., 24, 439 (2009)
- Yeon JH, Seo HB, Oh SH, Choi WS, Kang DH, Lee HY, Jung KH, KSBB J., 25, 283 (2010)
- Kim DG, Kim EY, Kim YR, Kim JK, Lee HS, Kong IS, J. Life Sci., 21, 68 (2011)
- Jung HS, Seong PJ, Go AR, Lee SJ, Kim SW, Han SO, Cho JH, Cho DH, Kim YH, Park CH, KSBB J., 26, 223 (2011)
- Kim JE, Yoon YH, Shin TS, Kim MY, Byun HS, Oh SJ, Seo HJ, KSBB J., 26, 317 (2011)
- Lee OS, Jang SY, Jeong YJ, J. Korean Soc. Food Sci.Nutr., 32, 181 (2003)
- Park JY, Hong CS, Han JH, Kang HW, Chung BW, Choi GW, Min J, Korean Chem. Eng. Res., 49(1), 105 (2011)
- Park SJ, Hong SG, Kang KK, Kim YK, Appl. Chem. Eng., 22(5), 562 (2011)
- Lee JE, Lee SE, Choi WY, Kang DH, Lee HY, Jung KH, Kor. J. Mycol., 39, 243 (2011)
- Yoon BT, Kim YW, Chung KW, Kim JS, Appl. Chem. Eng., 22(3), 336 (2011)