화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.23, No.3, 279-283, June, 2012
산 및 효소 가수분해를 이용한 홍조류로부터 바이오 에탄올 생산
Production of Bio-ethanol from Red Algae by Acid Hydrolysis and Enzyme Treatment
E-mail:
초록
화석연료로 인한 환경오염 등의 문제를 해결하기 위해서 다양한 원료를 이용하여 바이오 에탄올 생산에 대한 연구가 진행되고 있다. 해조류 중에 홍조류는 agar, carrageenan, porphyran으로 구성되어 있어 산 처리를 통해 바이오에탄올 생산에 유용한 바이오매스로 전환이 가능하다. 본 연구는 홍조류의 가수분해물을 이용하여 바이오에탄올 생산의 최적조건을 찾으려고 한다. 바이오에탄올 생산하기 위해 전처리 된 우뭇가사리에 Saccharomyces cerevisiae KCCM112를 접종해 발효하였다. 우뭇가사리 가수분해의 최적조건은 1.5% H2SO4를 121 ℃에서 30 min 반응시켰을 때 7.04 g/L의 galactose와 1.94 g/L의 glucose가 생산되었다. 그리고 CH3COOH의 경우 2.0% 농도로 처리하였을 때, galactose 0.75 g/L가 생산되었다. 이와 반대로 도박에서는 H2SO4 1.5%를 처리하였을 때 galactose를 6.38 g/L 생산하였으며, CH3COOH을 처리했을 때 0.368 g/L이 생산되었다. 우뭇가사리에서 에탄올 생산은 1.0% H2SO4를 121 ℃에서 30 min 간 처리하였을 때 가장 높았으며, 96 h 배양하였을 때 3.77 g/L의 에탄올을 생산했다.
Bio-ethanol production research using various material has been problemed for solving problems of environment pollution caused by fossil fuels. Red-algae consists of agar, carrageenan, and porphyran. If it is treated by acid, it is able to change useful bio-mass for bio-ethanol. In this study, we found an optimal condition for bio.ethanol production from acid hydrolysate in red-algae. To produce bio-ethanol, Saccharomyces cerevisiae KCCM1129 inoculated to acid hydrolysate of Gelidium amansii. The optimal condition for Gelidium amansii hydrolysis was found to be 30 min reaction at H2SO4 concentration of 1.5% and 121 ℃. At this condition, its produced to 7.04 g/L galactose and 1.94 g/L glucose. And acetic acid concentration of 2.0% in agar produced 0.75 g/L galactose. In contrast, Pachymeniopis elliptica was treated with H2SO4 concentration of 1.5%, it produced 6.38 g/L galactose. And Pachymeniopis elliptica treated with acetic acid concentration of 2% produced 0.368 g/L galactose. The optimal condition of ethanol production was found to be 96 h reaction at H2SO4 concentration of 1.0% and 30 ℃, which produced 3.77 g/L ethanol.
  1. Kim, Lee ES, Kim W, Suh DJ, Ahn BS, Clean Technol., 17(2), 156 (2011)
  2. Lee JW, Kim HY, Jeffries TW, Choi IG, Mokchae Konghak., 38, 561 (2010)
  3. Kim DS, Kim HR, Kim JH, Pyeun JH, J. Kor. Fish.Soc., 33, 70 (2000)
  4. Do JR, Nam YJ, Park JH, Jo JH, J. Kor. Fish. Soc., 30, 428 (1997)
  5. Song EJ, Kim AR, Kim MJ, Lee SY, Kim KBWR, Park JG, Lee JW, Byun MW, Ahn DH, Food Eng.Progr., 12, 58 (2008)
  6. Kim SM, Park SM, Choi HM, Lee KT, J. Kor. Fish.Soc., 32, 495 (1999)
  7. Kim JH, Yoon MH, J. Appl. Biol. Chem., 54, 41 (2011)
  8. Park JH, Koo JG, J. Kor. Fish. Soc., 41, 409 (2008)
  9. Lee SM, Lee JH, Appl. Chem. Eng., 21(2), 154 (2010)
  10. Horn SJ, Aasen IM, Østgaard K, J. Ind. Microbiol.Biotechnol., 25, 249 (2000)
  11. Lee JC, Kim JH, Park HS, Park DW, J. of KSEE., 609 (2010)
  12. Lee SM, Yu BJ, Kim YM, Choi SJ, Ha JM, Lee JH, J. Korean Ind. Eng. Chem., 20(3), 290 (2009)
  13. Choi GW, Han MH, Kim Y, Korean J. Biotechnol.Bioeng., 23, 276 (2008)
  14. Jung H, Choi YS, Yang DR, Joo OS, Jung KD, Clean Technol., 14(2), 129 (2008)
  15. Lee MG, Cho DH, Kim YH, Lee JW, Lee JH, Kim SW, Cho JH, Lee DH, Kim SY, Park CH, KSBB J., 24, 439 (2009)
  16. Yeon JH, Seo HB, Oh SH, Choi WS, Kang DH, Lee HY, Jung KH, KSBB J., 25, 283 (2010)
  17. Kim DG, Kim EY, Kim YR, Kim JK, Lee HS, Kong IS, J. Life Sci., 21, 68 (2011)
  18. Jung HS, Seong PJ, Go AR, Lee SJ, Kim SW, Han SO, Cho JH, Cho DH, Kim YH, Park CH, KSBB J., 26, 223 (2011)
  19. Kim JE, Yoon YH, Shin TS, Kim MY, Byun HS, Oh SJ, Seo HJ, KSBB J., 26, 317 (2011)
  20. Lee OS, Jang SY, Jeong YJ, J. Korean Soc. Food Sci.Nutr., 32, 181 (2003)
  21. Park JY, Hong CS, Han JH, Kang HW, Chung BW, Choi GW, Min J, Korean Chem. Eng. Res., 49(1), 105 (2011)
  22. Park SJ, Hong SG, Kang KK, Kim YK, Appl. Chem. Eng., 22(5), 562 (2011)
  23. Lee JE, Lee SE, Choi WY, Kang DH, Lee HY, Jung KH, Kor. J. Mycol., 39, 243 (2011)
  24. Yoon BT, Kim YW, Chung KW, Kim JS, Appl. Chem. Eng., 22(3), 336 (2011)