화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.23, No.3, 326-332, June, 2012
강원지역 폐옥수수대로부터 바이오에탄올 생산 : 효소 당화부터 발효까지
Bioethanol Production from Wasted Corn Stalk from Gangwon Province : from Enzymatic Hydrolysis to Fermentation
E-mail:
초록
다양한 전처리 방법 중에서 묽은 황산법으로 전처리한 폐옥수수대가 효소적 당화 공정을 거쳤을 때 가장 높은 포도당 수율을 보였다. 이 효소적 당화공정을 통계적으로 분석한 결과 효소량, 고액비, 반응시간 모두 당화효율과 비례적인 관계를 보였으며 그 중에서 효소량이 가장 큰 영향을 주는 인자로 파악되었으며 최적 조건에서 76.1%의 당화 효율을 보일 것으로 예측되었다. 분리당화 발효공정에서, Saccharomyces cerevisiae는 효소 당화를 거쳐 얻은 포도당의 80% 이상을 에탄올 수율 37%, 생산성 0.42 g/L.hr로 바이오에탄올을 생산하였다. 동시당화 발효공정에서는 전처리된 시료가 가진 글루칸 59.5%가 0.20 g/L.hr의 생산성으로 에탄올로 전환되었다. 두 공정을 통해서 얻을 수 있는 폐옥수수대 1 kg 당 바이오에탄올 양은 88 g 정도로 거의 같은 것으로 나타났다. 분리당화 발효공정과 동시당화 발효공정을 통해 강원도 폐옥수수대로부터 생산할 수 있는 바이오에탄올은 수거율 50% 기준으로 약 190만 리터로 예측되었다.
Among the samples prepared by various pre-treatment methods, the one pretreated by dilute sulfuric acid showed the highest glucose yield in the enzymatic hydrolysis. Statistical analysis of enzymatic hydrolysis revealed that the glucose yield was in proportion to the enzyme dosage, the ratio of the pre-treated sample to the buffer solution, and the reaction time and that the effect of enzyme dosage was predominant in the experiment range. In addition, the glucose yield was estimated to be 76.1% at an optimal enzymatic hydrolysis condition. In a separate hydrolysis and fermentation (SHF), Saccharomyces cerevisiae converted over 80% of glucose from the enzymatic hydrolysis of pre-treated wasted corn stalk by dilute sulfuric acid to bioethanol with 37% of ethanol yield and 0.42 g/L.hr of productivity. In the simultaneous saccharification and fermentation (SSF), 59.5% of conversion from glucan to ethanol and 0.20 g/L.hr of productivity were achieved. In both SHF and SSF, approximately 88 g of bioethanol could be obtained from 1 kg of wasted corn stalk. The possible amount of bioethanol in Gangwon province were estimated to be 1.9 kiloton with the assumption of the 50% of collection ratio.
  1. Antoni D, Zverlov VV, Schwarz WH, Appl. Microbiol. Biotechnol., 77(1), 23 (2007)
  2. Jeon DJ, Yeom SH, Korean J. Chem. Eng., 27(5), 1555 (2010)
  3. Sang BI, Kim YH, NICE., 26, 704 (2008)
  4. Renewable Energy Policy Network for the 21st Century,Renewables Global Status Report 2007 (2008)
  5. Korean Ministry of Knowledge Economy, White Paper of New & Renewable Energy, 344 (2008)
  6. Taherzadeh MJ, Karimi K, Int. J. Mol. Sci., 9(9), 1621 (2008)
  7. Hendriks ATWM, Zeeman G, Bioresource Technol., 100, 10 (2009)
  8. Kim YS, J. Korean Wood Sci. Tech., 37, 274 (2009)
  9. Hwangbo JK, Seo JK, Kwak YS, RIST Research., 23, 126 (2009)
  10. Won KY, Oh KK, KSBB J., 24, 361 (2009)
  11. Choi JM, Kang SY, Yeom SH, J. KORRA., 19, 79 (2011)
  12. Statistics Korea, Korean Statistical Information Service (www.kosis.kr) (2011)
  13. Park WK, Park NB, Shin JD, Hong SG, Kwon SI, Korean J. Environ. Agr., 30, 252 (2011)
  14. Won KY, Msc. Dissertation, Dankook University, Cheonan, Korea (2010)
  15. Jeong SM, Ph.D. Dissertation, University of Seoul, Seoul, Korea (2011)
  16. Kang HJ, Li HX, Kim YJ, Kim SJ, KSBB J., 25, 471 (2010)
  17. Han HJ, Kim SJ, Korean J. Biotechnol. Bioeng., 21, 267 (2006)
  18. Rouhollah H, Iraj N, Giti E, Sorah A, African J. Biotechnol., 6, 1110 (2007)
  19. Lim YS, Msc. Dissertation, Seoul National University, Seoul, Korea (2008)
  20. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lukas J, NREL/TP-510-32438 (2002)
  21. Chung Y, Hwang I, Kim IW, Moon I, Yeo YK, Korean Chem. Eng. Res., 44(3), 319 (2006)
  22. Lee JI, Choi HJ, Jung HD, Choi YS, Korean J. Intl.Agri., 21, 102 (2009)