화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.12, 1761-1765, December, 2012
Biological synthesis of gold nanoparticles by Bacillus subtilis and evaluation of increased antimicrobial activity against clinical isolates
E-mail:
Biological sources of microorganisms and plants are playing a major role in the reduction of metallic nanoparticles such as silver and gold, as it emerges as an eco-friendly and exciting approach in nanotechnology. We report on the biological synthesis of gold nanoparticles using the culture supernatant of Bacillus subtilis and its effect on increased antibacterial and antifungal activities against clinically isolated organism. When the supernatant of Bacillus subtilis was added to HAuCl4 aqueous solution, HAuCl4 was reduced as Au+ ions, which confirmed the presence of nanoparticles by the color change of pale yellow to purple. The minimum and maximum peaks were observed at 24th and 120th hours by UV-Visible spectroscopy. The combined antibacterial and antifungal activities with various antibiotics were observed against clinical isolates.
  1. Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL, J. Nanopart. Res., 6, 377 (2004)
  2. Guoa S, Wang E, Anal. Chim. Acta., 598, 181 (2007)
  3. Husseiny MI, Abd El-Aziz M, Badr Y, Mahmoud MA, Spectrochim. Acta Part A., 67, 1003 (2007)
  4. Song JY, Kim BS, Bioprocess Biosyst. Eng., 32(1), 79 (2008)
  5. Gericke M, Pinches A, Gold Bull., 39, 22 (2006)
  6. Klaus T, Joerger R, Olsson E, Granqvist CG, Proc. Nat.Acad. Sci. U.S.A., 96, 13611 (1999)
  7. Reeves RD, Baker AJM, Metal-accumulating plants, In Raskin I. and Ensley B. D. Eds., 193 (2000)
  8. Gardea-Torresdey JL, Parsons J, Gomez E, Peralta-Videa J, Troiani E, Santiago P, Yacaman M, Nano Lett., 2, 397 (2002)
  9. Gardea-Torresdey JL, Rodriguez E, Parsons JG, Peralta-Videa JR, Meitzner G, Cruz-Jimenez G, Anal. Bioanal.Chem., 382, 347 (2005)
  10. Beveridge TJ, Murray RGE, J. Bacteriol., 141, 876 (1980)
  11. Reddy AS, Chen CY, Chen CC, Jean JS, Chen HR, Tseng MJ, Fan CW, Wang JC, J. Nanosci. Nanotechnol., 10, 6567 (2010)
  12. Balagurunathan R, Radhakrishnan M, Baburajendran R, Velmurugan D, Indian J. Biochem. Biophys., 48, 331 (2011)
  13. Zawrah MF, El-Moez SIA, Life Sci. J., 8(4), 102 (2011)
  14. Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S, Nanotoxicol., 5, 43 (2011)
  15. Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG, Nanoscale Res.Lett., 4, 794 (2009)
  16. Pissuwan D, Valenzuela SM, Miller CM, Cortie MB, Nano Lett., 7, 3808 (2007)
  17. Huang WC, Tsai PJ, Chen YC, Nanomedicine., 2, 777 (2007)
  18. Zharov VP, Mercer KE, Galitovskaya EN, Smeltzery MS, Biophys. J., 90, 619 (2006)
  19. Williams DN, Ehrman SH, Holoman TRP, J. Nanobiotechnol., 4, 3 (2006)
  20. Gu H, P. Ho L, Tong E, Wang L, Xu B, Nano Lett., 3, 1261 (2003)
  21. Lee SM, Song KC, Lee BS, Korean J. Chem. Eng., 27(2), 688 (2010)
  22. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M, Nanomedicine: Nanotechnology, Biology and Medicine., 5, 382 (2009)
  23. Shahverdi AR, Fakhimi A, PharmD, Shahverdi HR, Minaian S, Nanomedicine: Nanotechnology, Biology and Medicine., 3, 168 (2007)
  24. Zhang YW, Peng HS, Huang W, Zhou YF, Yan DY, J. Colloid Interface Sci., 325(2), 371 (2008)
  25. Grace AN, Pandian K, Colloids and Surfaces A: Physicochem. Eng. Aspects., 297, 63 (2007)
  26. Zhang H, Chen G, Environ. Sci. Technol., 43, 2905 (2009)