화학공학소재연구정보센터
Korean Journal of Rheology, Vol.1, No.1, 20-28, November, 1989
에틸렌-비닐알콜 공중합체와 나일론 블렌드의 유변학 및 형태학
Rheology and Morphology of Ethylene-Vinyl Alcohol Copolymers/Nylons Blends
초록
비닐 알코올의 함량이 62(EVOH-62) 및 71(EVOH-71)mole%인 에틸렌 비닐알코올 공중합체와 나일론(나일론-6, 나일론-6/12 및 나일론-12)과의 블렌드를 이축 압출기에서 제조하였으며, 이들블렌드의 형택학 및 유변학적 성질을 SEM, TEM 및 RDS로 측정하였다.EVOH-62/나일론-6 및 EVOH-71/나일론-6 블렌드는 나일론의 조성이 많은 영역에서는균일상을, EVOH 조성이 많은 영역에서는 미세한 상분리 (약 0.2μ)를 나타내었다. 한편, EVOH-7l/나일론-6/12 및 EVOH-71/나일론-12 블렌드는 상분리가 뚜렸하였으며, EVOH 조성이 많은 영역에서는 피브릴화가 나타났다. 낮은 진동주파수 영역에서 점도 대 조성곡선은 전반적으로 양의 편차를 보였으나, Cole-Cole plot은 나일론-6과의 블렌드가, 나일론-6/12나 나일론-12와의 블렌드에 비해 유변학적인 측면에서보다 상용성이 우수함을 보였다.
Melt blends of ethylene vinyl alcohol copolymers, containing 62 (EVOH-62) and 71 (EVOH-71) mole% vinyl alcohols, with nylons (nylon-6, nylon-6/l2, and nylon -12) have been prepared in a twin screw compounding machine. The morphological textures of the blends were determined from SEM and TEM, and rheological properties were measured using RDS. Morphological observations indicated that the EVOH-62/ny1on-6 and EVOH-71/nylon-6 blends showed homogeneous phase morphologies in nylon-6 rich region, and fine phase separations (c.a. 0.2 μ) in EVOH rich region. On the contrary, clean phase separations in large domains were observed from EVOH-71/nylon-6/12 and EVOH-71/ny1on-12 blends. Fibrillation was also obtained from EVOH rich blends. Blend viscosities at low frequencies gave positive deviation from the simple additive rule, regardless of blend systems tested. However, futher analysis using the Cole-Cole plots indicated better rheological miscibility for blends with nylon-6 than those with nylon-6/12 and nylon-12. Keywords:ethylene-vinyl alcohol copolymer/nylon blends/ rheology/morphology/miscibility
  1. Iwanami T, Hirai Y, TAPPI J., 66(10), 85 (1983)
  2. U.S. Patent, 4,427,825 (1984)
  3. U.S. Patent, 4,347,332 (1982)
  4. Venkatesh GM, Gilbert RD, Fornes RE, Polymer, 26, 45 (1985) 
  5. Paul DR, Barlow JW, Polymer, 25, 487 (1984) 
  6. Barlow JW, Paul DR, Polym. Eng. Sci., 27, 1482 (1987) 
  7. Shiomi T, Karasz FE, MacKnight WJ, Macromolecules, 19, 2274 (1986) 
  8. Kressler J, Kammer HW, Polym. Bull., 19, 283 (1988)
  9. Fernandes AC, Barlow JW, Paul DR, Polymer, 27, 1799 (1986) 
  10. Fernandes AC, Barlow JW, Paul DR, J. Appl. Polym. Sci., 32, 5357 (1986) 
  11. Weber G, Kuntze D, Stix W, Colloid Polym. Sci., 260, 956 (1982) 
  12. van Krevelen DW, "Properties of Polymers," ch. 7, Elsevier, Amsterdam-Oxford-New York (1976)
  13. Lyngaae-Jorgensen J, Andersen FE, Alle N, Klempner D, Frisch KC, "Polymer Alloy III," p. 105, Plenum, New York (1983)
  14. Vinogradov GV, Yarlykov BV, Tsebrenko MV, Yudin AV, Ablazova TI, Polymer, 16, 609 (1975) 
  15. Han CD, Yu TC, Polym. Eng. Sci., 12, 81 (1972) 
  16. Han CD, "Multiphase Flow in Polymer Processing," p. 190, Academic, New York (1981)
  17. Han CD, Yang HH, J. Appl. Polym. Sci., 33, 1221 (1987) 
  18. Liang BR, White JL, Spruiell JE, Goswami BC, J. Appl. Polym. Sci., 28, 2011 (1983) 
  19. Chuang HK, Han CD, J. Appl. Polym. Sci., 29, 2205 (1984) 
  20. Wang KJ, Lee LJ, J. Appl. Polym. Sci., 33, 431 (1987) 
  21. Wisnie C, Marin G, Monge PH, Eur. Polym. J., 21, 479 (1985) 
  22. Han CD, Lem KW, Polym. Eng. Rev., 2(2), 135 (1982)
  23. Han CD, Yang HH, J. Appl. Polym. Sci., 33, 1199 (1987) 
  24. Han CD, Jhon MS, J. Appl. Polym. Sci., 32, 3809 (1986) 
  25. Ajji A, Prud-Homme RE, J. Polym. Sci. B: Polym. Phys., 26, 2279 (1988)