Journal of Materials Science, Vol.47, No.14, 5446-5454, 2012
Polyamide 6 composites reinforced with glass fibers modified with electrostatically assembled multiwall carbon nanotubes
Glass fiber-multiwall carbon nanotubes (GF-MWCNTs) hybrid preforms were prepared by electrostatic assembly method. Negatively charged MWCNTs by oxidization treatment were directly adsorbed onto the surfaces of positively charged GF to form tunable structure. The thickness and morphology of GF-MWCNTs preforms can be controlled by the assembly pH value and the concentration of oxidized-MWCNTs solution. We demonstrate that GF-MWCNTs preforms have uniform and porous interconnected network structure of MWCNTs on the surfaces of GF using FESEM. The multi-scale composites with the hybrid preforms were prepared by melt compounding. The presence of MWCNTs with porous nanostructure helps in the formation of interpenetrating network with polyamide 6 (PA 6) at the interface layer. As a result, the tensile tests of these multi-scale composites exhibit higher tensile properties in comparison with composites with GF, showing a promising structural composite to replace the traditional GF-reinforced composites with limited improvement of the performance.