화학공학소재연구정보센터
Journal of Membrane Science, Vol.349, No.1-2, 312-320, 2010
Surface modification of polypropylene microfiltration membrane via entrapment of an amphiphilic alkyl oligoethyleneglycolether
For surface hydrophilic and antifouling modification of polypropylene (PP) microfiltration membrane, the novel method for entrapment of the amphiphilic modifier octaethyleneglycol monooctadecylether (C(18)E(8)) was investigated in detail. The effects of the modification conditions on PP membrane and polymer structure were characterized by gas flow/pore dewetting, nitrogen adsorption/BET analysis, scanning electron microscopy and X-ray diffraction; surface properties were evaluated by ATR-FTIR spectroscopy and static water contact angle; filtration performance as well as antifouling property were investigated by water flux measurement, trans-membrane zeta potential, static and dynamic protein adsorption experiments. Furthermore, a stability study of the modified membrane was performed to offer a comprehensive understanding of this physical entrapment strategy. It can be concluded that both outer surface and inner pore walls of PP membrane were covered with oligoethylene glycol after entrapment modification by C18E8, with only very slight changes of membrane pore and polymer structures. Correspondingly, PP membrane surface hydrophilicity and antifouling performance were evidently improved. It was also found that the entrapped modifier has a tendency to leach out of the PP membrane in water at room temperature. However, after 8 weeks changes became very small, and the modified PP membrane surface still exhibited significant hydrophilicity and antifouling properties. (C) 2009 Elsevier B.V. All rights reserved.