화학공학소재연구정보센터
Journal of Membrane Science, Vol.362, No.1-2, 444-452, 2010
Wetting of polypropylene hollow fiber membrane contactors
Membrane wetting by absorbents leads to an Increase in mass transfer resistance and a deterioration in CO(2) absorption performance during the membrane gas absorption process In order to better understand the wetting mechanism of membrane pores during their prolonged contact with adsorbents, polypropylene (PP) hollow fibers were Immersed in three different absorbents for up to 90 days Monoethanolamine, methyldiethanolamine, and deionized water were applied as absorbent solutions The characterization results of membrane samples confirm that the absorbent molecules diffuse into PP polymers during the exposure process, resulting in the swelling of the membranes The absorption-swelling wetting mechanism is proposed to explain observations made during the wetting process The strong reduction of contact angles indicates that the membrane surface hydrophobicity decreases remarkably during immersion due to membrane-absorbent interaction Membrane surface morphologies and surface roughness suffer from significant and complicated changes after immersing the membrane fibers in the absorbents. Immersion in an absorbent with a high surface tension results in small changes in membrane surface morphology. As indicated by the experimental results, improving membrane surface hydrophobicity may be an effective way of overcoming wetting problems (C) 2010 Elsevier B V All rights reserved