화학공학소재연구정보센터
Clean Technology, Vol.18, No.2, 162-169, June, 2012
Pt-Sn/θ-Al2O3 촉매상에서 반응조건에 따른 n-부탄의 탈수소화 반응
Effect of Reaction Conditions for n-Butane Dehydrogenation over Pt-Sn/θ-Al2O3 Catalyst
E-mail:
초록
n-부탄의 탈수소화 촉매로 Pt와 Sn을 알루미나 지지체에 담지하기 위하여 함침법을 이용하여 Pt-Sn/θ-Al2O3 촉매를 제조하였다. 물리적화학적 특성을 알아보기 위해 XRD, N2 흡탈착, NH3-TPD, H2-TPR 분석을 실시하였다. 또한 Pt-Sn/θ-Al2O3 촉매상에서 탈수소반응에 대한 활성에 대한 영향을 관찰하기 위해서 전처리 온도, 전처리 시간, 반응온도, 공간속도에 따른 촉매의 활성에 대한 영향과 더불어 탈수소 반응에 대한 온도 조건에 따른 반응속도의 변화를 관찰하였다. 5~55% 부탄의 전환율 변화에 따른 부텐의 선택도 합은 95% 정도로 일정하게 유지되었다. 아레니우스식을 이용하여 얻은 활성화 에너지 82.4 kJ mol-1이었고, 멱함수를 이용하여 얻은 n-부탄 및 수소의 반응차수는 각각 0.70과 -0.20차로 나타났다.
Pt-Sn/θ-Al2O3 catalyst for n-butane dehydrogenation reaction was prepared by incipient wetness method. To confirm the physicochemical properties of Pt-Sn/θ-Al2O3 catalyst, the characterization was performed using X-ray diffraction (XRD), N2 sorption analysis, temperature programmed desorption of NH3 (NH3-TPD), temperature programmed reduction of H2 (H2-TPR) techniques. Also, the catalytic activities of Pt-Sn/θ-Al2O3 for n-butane dehydrogenation was tested as a function of pretreatment temperature, pretreatment time, reaction temperature, and the partial pressure of n-butane and hydrogen. The sum of selectivities to n-butenes consisting of 1-butene, cis-2-butene, and trans-2-butene was almost constant 95% in the range of conversion of n-butane 5-55%. The activation energy calculated from Arrhenius equation was 84 kJ mol-1 and the reaction orders of n-butane and hydrogen from Power’s law were 0.70 and -0.20, respectively.
  1. Resasco DE, “Dehydrogenation by Heterogeneous Catalysts,” Encyclopedia of Catalysis, January (2000)
  2. Pakhomov NA, Kashkin VN, Nemykina EI, Molchanov VV, Nadtochiy VI, Noskov AS, Chem. Eng. J., 154(1-3), 185 (2009)
  3. Encyclopedia of Hydrocarbons, Volume 2/Refining and Petrochemicals, Chap. 11.2, 687
  4. Kotov SV, Kankaeva, Chem. Technol. Fuels and Oils., 30(5-6), 240 (1994)
  5. Mol JC, J. Mol. Catal. A-Chem., 213(1), 39 (2004)
  6. McNamara JM, Jackson SD, Lennon D, Catal. Today, 81(4), 583 (2003)
  7. Ballarini AD, Zgolicz P, Vilella IMJ, de Miguel SR, Castro AA, Scelza OA, Appl. Catal. A: Gen., 381(1-2), 83 (2010)
  8. Zhang YW, Zhou YM, Wan LH, Xue MW, Duan YZ, Liu X, Fuel Process. Technol., 92(8), 1632 (2011)
  9. Zhang Y, Zhou Y, Shi X, Sheng X, Duan Y, Zhou S, Zhang Z, Fuel Proc. Technol., 96, 220 (2012)
  10. Bai L, Zhou Y, Zhang Y, Sheng X, Duan Y, Catal. Comm., 10, 2013 (2009)
  11. Kumar MS, Chen D, Walmsley JC, Holmen A, Catal. Comm., 9, 747 (2008)
  12. Huang L, Xu B, Yang L, Fan Y, Catal. Comm., 9, 2593 (2008)
  13. Bocangera S, Ballarini A, Zgolicz P, Scelza O, de Miguel S, Catal. Today., 143, 334 (2009)
  14. Bocanegra SA, Guerrero-Ruiz A, de Miguel SR, Scelza OA, Appl. Catal. A: Gen., 277(1-2), 11 (2004)
  15. Bocanegra SA, Castro AA, Scelza OA, de Miguel SR, Appl. Catal. A: Gen., 333(1), 49 (2007)
  16. Bocangera SA, Zgolicz PD, Scelza OA, de Miguel SR, Catal. Comm., 10, 1463 (2009)
  17. Kul'ko EV, Ivanova AS, Litvak GS, Kryukova GN, Tsybulya SV, Kinet. Catal., 45(5), 754 (2004)
  18. Carre S, Tapin B, Gnep NS, Revel R, Magnoux P, Appl. Catal. A: Gen., 372(1), 26 (2010)
  19. Bocanegra SA, de Miguel SR, Borbath I, Margitfalvi JL, Scelza OA, J. Mol. Catal. A-Chem., 301(1-2), 52 (2009)
  20. He S, Bi W, Lai Y, Rong X, Yang X, Sun C, J. Fuel. Technol., 38(4), 452 (2010)
  21. Barias OA, Holmen A, Blekkan EA, J. Catal., 158(1), 1 (1996)
  22. Siri GJ, Casella ML, Santori GF, Ferretti OA, Ind. Eng. Chem. Res., 36(11), 4821 (1997)
  23. Yu CL, Xu HY, Ge QJ, Li WZ, J. Mol. Catal. A-Chem., 266(1-2), 80 (2007)
  24. Yu CL, Ge QJ, Xu HY, Li WZ, Appl. Catal. A: Gen., 315, 58 (2006)
  25. Vazquez-Zavala A, Ostoa-Montes A, Acosta D, Gomez-Cortes A, Appl. Surf. Sci., 136, 62 (1998)
  26. Li Q, Sui ZJ, Zhou XG, Chen D, Appl. Catal. A: Gen., 398(1-2), 18 (2011)