Clean Technology, Vol.18, No.2, 162-169, June, 2012
Pt-Sn/θ-Al2O3 촉매상에서 반응조건에 따른 n-부탄의 탈수소화 반응
Effect of Reaction Conditions for n-Butane Dehydrogenation over Pt-Sn/θ-Al2O3 Catalyst
E-mail:
초록
n-부탄의 탈수소화 촉매로 Pt와 Sn을 알루미나 지지체에 담지하기 위하여 함침법을 이용하여 Pt-Sn/θ-Al2O3 촉매를 제조하였다. 물리적화학적 특성을 알아보기 위해 XRD, N2 흡탈착, NH3-TPD, H2-TPR 분석을 실시하였다. 또한 Pt-Sn/θ-Al2O3 촉매상에서 탈수소반응에 대한 활성에 대한 영향을 관찰하기 위해서 전처리 온도, 전처리 시간, 반응온도, 공간속도에 따른 촉매의 활성에 대한 영향과 더불어 탈수소 반응에 대한 온도 조건에 따른 반응속도의 변화를 관찰하였다. 5~55% 부탄의 전환율 변화에 따른 부텐의 선택도 합은 95% 정도로 일정하게 유지되었다. 아레니우스식을 이용하여 얻은 활성화 에너지 82.4 kJ mol-1이었고, 멱함수를 이용하여 얻은 n-부탄 및 수소의 반응차수는 각각 0.70과 -0.20차로 나타났다.
Pt-Sn/θ-Al2O3 catalyst for n-butane dehydrogenation reaction was prepared by incipient wetness method. To confirm the physicochemical properties of Pt-Sn/θ-Al2O3 catalyst, the characterization was performed using X-ray diffraction (XRD), N2 sorption analysis, temperature programmed desorption of NH3 (NH3-TPD), temperature programmed reduction of H2 (H2-TPR)
techniques. Also, the catalytic activities of Pt-Sn/θ-Al2O3 for n-butane dehydrogenation was tested as a function of pretreatment temperature, pretreatment time, reaction temperature, and the partial pressure of n-butane and hydrogen. The sum of selectivities to n-butenes consisting of 1-butene, cis-2-butene, and trans-2-butene was almost constant 95% in the range of conversion of n-butane 5-55%. The activation energy calculated from Arrhenius equation was 84 kJ mol-1 and the reaction orders of n-butane and hydrogen from Power’s law were 0.70 and -0.20, respectively.
Keywords:n-Butane;Dehydrogenation;Pt-Sn/θ-Al2O3;Reaction order of n-butane;Reaction order of hydrogen
- Resasco DE, “Dehydrogenation by Heterogeneous Catalysts,” Encyclopedia of Catalysis, January (2000)
- Pakhomov NA, Kashkin VN, Nemykina EI, Molchanov VV, Nadtochiy VI, Noskov AS, Chem. Eng. J., 154(1-3), 185 (2009)
- Encyclopedia of Hydrocarbons, Volume 2/Refining and Petrochemicals, Chap. 11.2, 687
- Kotov SV, Kankaeva, Chem. Technol. Fuels and Oils., 30(5-6), 240 (1994)
- Mol JC, J. Mol. Catal. A-Chem., 213(1), 39 (2004)
- McNamara JM, Jackson SD, Lennon D, Catal. Today, 81(4), 583 (2003)
- Ballarini AD, Zgolicz P, Vilella IMJ, de Miguel SR, Castro AA, Scelza OA, Appl. Catal. A: Gen., 381(1-2), 83 (2010)
- Zhang YW, Zhou YM, Wan LH, Xue MW, Duan YZ, Liu X, Fuel Process. Technol., 92(8), 1632 (2011)
- Zhang Y, Zhou Y, Shi X, Sheng X, Duan Y, Zhou S, Zhang Z, Fuel Proc. Technol., 96, 220 (2012)
- Bai L, Zhou Y, Zhang Y, Sheng X, Duan Y, Catal. Comm., 10, 2013 (2009)
- Kumar MS, Chen D, Walmsley JC, Holmen A, Catal. Comm., 9, 747 (2008)
- Huang L, Xu B, Yang L, Fan Y, Catal. Comm., 9, 2593 (2008)
- Bocangera S, Ballarini A, Zgolicz P, Scelza O, de Miguel S, Catal. Today., 143, 334 (2009)
- Bocanegra SA, Guerrero-Ruiz A, de Miguel SR, Scelza OA, Appl. Catal. A: Gen., 277(1-2), 11 (2004)
- Bocanegra SA, Castro AA, Scelza OA, de Miguel SR, Appl. Catal. A: Gen., 333(1), 49 (2007)
- Bocangera SA, Zgolicz PD, Scelza OA, de Miguel SR, Catal. Comm., 10, 1463 (2009)
- Kul'ko EV, Ivanova AS, Litvak GS, Kryukova GN, Tsybulya SV, Kinet. Catal., 45(5), 754 (2004)
- Carre S, Tapin B, Gnep NS, Revel R, Magnoux P, Appl. Catal. A: Gen., 372(1), 26 (2010)
- Bocanegra SA, de Miguel SR, Borbath I, Margitfalvi JL, Scelza OA, J. Mol. Catal. A-Chem., 301(1-2), 52 (2009)
- He S, Bi W, Lai Y, Rong X, Yang X, Sun C, J. Fuel. Technol., 38(4), 452 (2010)
- Barias OA, Holmen A, Blekkan EA, J. Catal., 158(1), 1 (1996)
- Siri GJ, Casella ML, Santori GF, Ferretti OA, Ind. Eng. Chem. Res., 36(11), 4821 (1997)
- Yu CL, Xu HY, Ge QJ, Li WZ, J. Mol. Catal. A-Chem., 266(1-2), 80 (2007)
- Yu CL, Ge QJ, Xu HY, Li WZ, Appl. Catal. A: Gen., 315, 58 (2006)
- Vazquez-Zavala A, Ostoa-Montes A, Acosta D, Gomez-Cortes A, Appl. Surf. Sci., 136, 62 (1998)
- Li Q, Sui ZJ, Zhou XG, Chen D, Appl. Catal. A: Gen., 398(1-2), 18 (2011)