화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.4, 1504-1511, July, 2012
The role of water vapor in carbon nanotube formation via water-assisted chemical vapor deposition of methane
E-mail:
Carbon nanotubes (CNTs) were synthesized over a CoO-MoO/Al2O3 catalyst via decomposition of methane in a horizontal quartz tube reactor. The effect of water vapor on the catalytic activity and catalyst lifetime was investigated for the first time in this system. We found that the introduction of an appropriate amount of water vapor (133.3 ppm) into the reaction environment enhanced and sustained the catalytic activity. A continuous supply of a controlled amount of water vapor was found to be optimal for producing CNTs with high crystallinity. The interruption of water vapor supply provoked the formation of an inner cap structure.
  1. Iijima S, Nature., 354, 56 (1991)
  2. Aexiadis VI, Verykios XE, Mater. Chem. Phys., 117(2-3), 528 (2009)
  3. Messina G, Modafferi V, Santangelo S, Tripodi P, Donato MG, Lanza M, Diamond Relat. Mater., 17, 1482 (2008)
  4. Chai SP, Zein SHS, Mohamed AR, Solid State Commun., 140, 248 (2006)
  5. Chen L, Liu HT, Yang KL, Wang JK, Wang XL, Mater. Chem. Phys., 112(2), 407 (2008)
  6. Futaba DN, Hata K, Namai T, Yamada T, Mizuno K, Hayamizu Y, Yumura M, Iijima S, J. Phys. Chem. B, 110(15), 8035 (2006)
  7. Helveg S, Lopez-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Nature., 427, 426 (2004)
  8. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S, Science., 306, 1362 (2004)
  9. Yamada T, Maigne A, Yudasaka M, Mizuno K, Futaba DN, Yumura M, Nano Lett., 8, 4288 (2008)
  10. Liu H, Zhang Y, Li RY, Sun XL, Wang FP, Ding ZF, Merel P, Desilets S, Appl. Surf. Sci., 256(14), 4692 (2010)
  11. Chai SP, Yeoh WM, Lee KY, Mohamed AR, J. Alloy Compd., 488, 294 (2009)
  12. Chai SP, Zein SHS, Mohamed AR, Carbon., 45, 1535 (2007)
  13. Chai SP, Zein SHS, Mohamed AR, Appl. Catal. A: Gen., 326(2), 173 (2007)
  14. Lee KY, Yeoh WM, Chai SP, Ichikawa S, Mohamed AR, Fuller. Nanotube Carbon Nanostruct., 18, 273 (2010)
  15. Ago H, Uehara N, Yoshihara N, Tsuji M, Yumura M, Tomonaga N, Carbon., 44, 2912 (2006)
  16. Futaba DN, Hata K, Yamada T, Mizuno K, Yumura M, Iijima S, Phys. Rev. Lett., 95, 1 (2005)
  17. Yoshihara N, Ago H, Tsuji M, J. Phys Chem. C., 111, 11577 (2007)
  18. Hu JL, Yang CC, Huang JH, Diamond Relat. Mater., 17, 2084 (2008)
  19. Wagner RS, Ellis WS, Appl. Phys. Lett., 4, 89 (1964)
  20. Tibbetts GG, J. Cryst. Growth., 66, 632 (1984)
  21. Baker RTK, Carbon., 27, 315 (1989)
  22. Veziri CM, Pilatos G, Karanikolos GN, Labropoulos A, Kordatos K, V. Kasselouri-Rigopoulou V, Microporous Mesoporous Mater., 110, 41 (2008)
  23. Bansal M, Lal C, Srivastava R, Kamalasanan MN, Tanwar LS, Physica B., 405, 1745 (2010)
  24. Reich S, Thomsen C, Maultzsch J, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley-VCH Verlag GmbH & Co, Berlin (2004)
  25. Antunes EF, Lobo AO, Corat EJ, Trava-Airoldi VJ, Martin AA, VerA. -ssimo C, Carbon., 44, 2202 (2006)
  26. Zhu L, Xiu Y, Hess DW, Wong CP, Nano Lett., 5, 2641 (2005)
  27. Harris PJF, Carbon Nanotubes and Related Structures New Materials for the Twenty-First Century, Cambridge, Cambridge University Press, United Kingdom (1999)
  28. Yu G, Gong J, Wang S, Zhu D, He S, Zhu Z, Carbon., 44, 1218 (2006)
  29. Deck CP, Vecchio K, Carbon., 43, 2608 (2005)
  30. Stadermann M, Sherlock SP, In JB, Fornasiero F, Park HG, Artyukhin AB, Nano Lett., 9, 738 (2009)